neural-amp-modeler

Neural network emulator for guitar amplifiers
Log | Files | Refs | README | LICENSE

commit 3cf105d0917244537521eec56f4a7df6847d6ea0
parent 0a5802d200bb784ea23e916247f7d09b9650014c
Author: Kostas Emmanouilidis <[email protected]>
Date:   Sun, 11 Jun 2023 07:16:03 +0200

Support wavio latest (#222)

* Add support for wavio.write new kwargs

* Update requirements.txt

* Update setup.py

* Update environment_cpu.yml

* Update environment_gpu.yml

* Updated np_to_wav function on data.py to set default value for 'scale' argument based on wavio module version. 'clip' set by **kwargs for versions >= 0.0.5

* Removed wavio version constraint on requirements.txt.
Added TestWav test cases for np to wav round test.

* Support Python 2 testing for TestWav

* Used temp directory for test.wav file. Used pytest.approx with abs tolerance for test assertions.

---------

Co-authored-by: Steven Atkinson <[email protected]>
Diffstat:
Menvironment_cpu.yml | 2+-
Menvironment_gpu.yml | 2+-
Mnam/data.py | 6+++++-
Mrequirements.txt | 2+-
Msetup.py | 2+-
Mtests/test_nam/test_data.py | 43+++++++++++++++++++++++++++++++++++++++++++
6 files changed, 52 insertions(+), 5 deletions(-)

diff --git a/environment_cpu.yml b/environment_cpu.yml @@ -31,5 +31,5 @@ dependencies: - pre-commit - pytorch_lightning - sounddevice - - wavio + - wavio >=0.0.5 - -e . diff --git a/environment_gpu.yml b/environment_gpu.yml @@ -33,5 +33,5 @@ dependencies: - pre-commit - pytorch_lightning - sounddevice - - wavio + - wavio >=0.0.5 - -e . diff --git a/nam/data.py b/nam/data.py @@ -122,14 +122,18 @@ def np_to_wav( filename: Union[str, Path], rate: int = 48_000, sampwidth: int = 3, - scale="none", + scale = None, + **kwargs ): + if wavio.__version__ <= "0.0.4" and scale is None: + scale = "none" wavio.write( str(filename), (np.clip(x, -1.0, 1.0) * (2 ** (8 * sampwidth - 1))).astype(np.int32), rate, scale=scale, sampwidth=sampwidth, + **kwargs ) diff --git a/requirements.txt b/requirements.txt @@ -19,5 +19,5 @@ scipy sounddevice torch tqdm -wavio<=0.0.4 # Breaking change in 0.0.5 +wavio wheel diff --git a/setup.py b/setup.py @@ -21,7 +21,7 @@ requirements = [ "tensorboard", "torch", "tqdm", - "wavio<=0.0.4", # Breaking change in 0.0.5 + "wavio>=0.0.5", # Breaking change with older versions ] setup( diff --git a/tests/test_nam/test_data.py b/tests/test_nam/test_data.py @@ -3,6 +3,7 @@ # Author: Steven Atkinson ([email protected]) import math +import os from enum import Enum from pathlib import Path from tempfile import TemporaryDirectory @@ -243,6 +244,47 @@ class TestDataset(object): return x_out, y_out +class TestWav(object): + tolerance = 1e-6 + + @pytest.fixture(scope="class") + def tmpdir(self): + with TemporaryDirectory() as tmp: + yield tmp + + def test_np_to_wav_to_np(self, tmpdir): + # Create random numpy array + x = np.random.rand(1000) + # Save numpy array as WAV file + filename = os.path.join(tmpdir, "test.wav") + data.np_to_wav(x, filename) + # Load WAV file + y = data.wav_to_np(filename) + # Check if the two arrays are equal + assert y == pytest.approx(x, abs=self.tolerance) + + def test_np_to_wav_to_np_44khz(self, tmpdir): + # Create random numpy array + x = np.random.rand(1000) + # Save numpy array as WAV file with sampling rate of 44 kHz + filename = os.path.join(tmpdir, "test.wav") + data.np_to_wav(x, filename, rate=44100) + # Load WAV file with sampling rate of 44 kHz + y = data.wav_to_np(filename, rate=44100) + # Check if the two arrays are equal + assert y == pytest.approx(x, abs=self.tolerance) + + def test_np_to_wav_to_np_scale_arg(self, tmpdir): + # Create random numpy array + x = np.random.rand(100) + # Save numpy array as WAV file with scaling + filename = os.path.join(tmpdir, "test.wav") + data.np_to_wav(x, filename, scale=None) + # Load WAV file + y = data.wav_to_np(filename) + # Check if the two arrays are equal + assert y == pytest.approx(x, abs=self.tolerance) + def test_audio_mismatch_shapes_in_order(): """ https://github.com/sdatkinson/neural-amp-modeler/issues/257 @@ -267,6 +309,7 @@ def test_audio_mismatch_shapes_in_order(): # x is loaded first; we expect that y matches. assert e.shape_expected == (x_samples, num_channels) assert e.shape_actual == (y_samples, num_channels) + if __name__ == "__main__": pytest.main()