neural-amp-modeler

Neural network emulator for guitar amplifiers
Log | Files | Refs | README | LICENSE

commit 0a5802d200bb784ea23e916247f7d09b9650014c
parent 8d85f3b4e6a8ae109c3462ff78fccf783afcc434
Author: Mike Oliphant <oliphant@nostatic.org>
Date:   Sat, 10 Jun 2023 22:05:20 -0700

Show 4 significant digits for checkpoint ESR (#265)

* Show 4 significant digits for checkpoint ESR

* Use 4 significant digits for final ESR display

* Use scientific notation after 10 digits to make sure filenames don't blow up

* Switch to .4g since it is sig figs and not decimals
Diffstat:
Mnam/train/core.py | 6+++---
1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/nam/train/core.py b/nam/train/core.py @@ -715,13 +715,13 @@ def _plot( esr_comment = "...This probably won't sound great :(" else: esr_comment = "...Something seems to have gone wrong." - print(f"Error-signal ratio = {esr:.4f}") + print(f"Error-signal ratio = {esr:.4g}") print(esr_comment) plt.figure(figsize=(16, 5)) plt.plot(output[window_start:window_end], label="Prediction") plt.plot(ds.y[window_start:window_end], linestyle="--", label="Target") - plt.title(f"ESR={esr:.4f}") + plt.title(f"ESR={esr:.4g}") plt.legend() if filepath is not None: plt.savefig(filepath + ".png") @@ -847,7 +847,7 @@ def train( trainer = pl.Trainer( callbacks=[ pl.callbacks.model_checkpoint.ModelCheckpoint( - filename="checkpoint_best_{epoch:04d}_{step}_{ESR:.4f}_{MSE:.3e}", + filename="checkpoint_best_{epoch:04d}_{step}_{ESR:.4g}_{MSE:.3e}", save_top_k=3, monitor="val_loss", every_n_epochs=1,