neural-amp-modeler

Neural network emulator for guitar amplifiers
Log | Files | Refs | README | LICENSE

commit ced3ec4355568faa1b89ff722afdf2987f219be2
parent 1c53cba5ddd5a2d61a74ba63ff51478299c568c2
Author: Steven Atkinson <[email protected]>
Date:   Wed, 20 Jul 2022 23:01:13 -0400

Version 0.3.0 (#39)

PR: https://github.com/sdatkinson/neural-amp-modeler/pull/39
# New features
* Hypernet parametric model (#23) (not supported by plugin yet.)
* DC loss (#31)
* ESR loss (#33)
* LSTM model (#35)
* Conditional LSTM model (#36)
Diffstat:
Dbin/train/inputs/config_learning.json | 18------------------
Rbin/train/inputs/config_data_single_pair.json -> bin/train/inputs/data/single_pair.json | 0
Rbin/train/inputs/config_data_two_pairs.json -> bin/train/inputs/data/two_pairs.json | 0
Abin/train/inputs/learning/default.json | 18++++++++++++++++++
Abin/train/inputs/models/catlstm.json | 42++++++++++++++++++++++++++++++++++++++++++
Rbin/train/inputs/config_model.json -> bin/train/inputs/models/convnet.json | 0
Abin/train/inputs/models/lstm.json | 33+++++++++++++++++++++++++++++++++
Mbin/train/main.py | 62+++++++++++++++++++++++++++++++++++++++++++++++++-------------
Mnam/_version.py | 2+-
Mnam/data.py | 156+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-------------
Mnam/models/_base.py | 72++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++------------
Mnam/models/_exportable.py | 54++++++++++++++++++++++++++++++++++++++++++++++++++++--
Anam/models/_names.py | 13+++++++++++++
Mnam/models/base.py | 138+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++------
Mnam/models/conv_net.py | 157+++++++++++++++++++++++++++++++++++++++----------------------------------------
Mnam/models/linear.py | 2+-
Anam/models/parametric/__init__.py | 4++++
Anam/models/parametric/catnets.py | 169+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Anam/models/parametric/hyper_net.py | 558+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Anam/models/parametric/params.py | 71+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Anam/models/recurrent.py | 183+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Atests/test_nam/test_data.py | 24++++++++++++++++++++++++
Atests/test_nam/test_models/__init__.py | 0
Atests/test_nam/test_models/base.py | 31+++++++++++++++++++++++++++++++
Atests/test_nam/test_models/test_conv_net.py | 40++++++++++++++++++++++++++++++++++++++++
Atests/test_nam/test_models/test_parametric/__init__.py | 4++++
Atests/test_nam/test_models/test_parametric/test_catnets.py | 50++++++++++++++++++++++++++++++++++++++++++++++++++
Atests/test_nam/test_models/test_parametric/test_hyper_net.py | 86+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Atests/test_nam/test_models/test_recurrent.py | 19+++++++++++++++++++
29 files changed, 1846 insertions(+), 160 deletions(-)

diff --git a/bin/train/inputs/config_learning.json b/bin/train/inputs/config_learning.json @@ -1,17 +0,0 @@ -{ - "train_dataloader": { - "batch_size": 16, - "shuffle": true, - "pin_memory": true, - "drop_last": true, - "num_workers": 4 - }, - "val_dataloader": { - }, - "trainer": { - "gpus": 1, - "max_epochs": 1000 - }, - "trainer_fit_kwargs": { - } -} -\ No newline at end of file diff --git a/bin/train/inputs/config_data_single_pair.json b/bin/train/inputs/data/single_pair.json diff --git a/bin/train/inputs/config_data_two_pairs.json b/bin/train/inputs/data/two_pairs.json diff --git a/bin/train/inputs/learning/default.json b/bin/train/inputs/learning/default.json @@ -0,0 +1,17 @@ +{ + "train_dataloader": { + "batch_size": 32, + "shuffle": true, + "pin_memory": true, + "drop_last": true, + "num_workers": 4 + }, + "val_dataloader": { + }, + "trainer": { + "gpus": 1, + "max_epochs": 1000 + }, + "trainer_fit_kwargs": { + } +} +\ No newline at end of file diff --git a/bin/train/inputs/models/catlstm.json b/bin/train/inputs/models/catlstm.json @@ -0,0 +1,41 @@ +{ + "_comments": [ + "Parametric extension of the LSTM model. All LSTM tips apply plus:", + " * Make sure that `input_size` is the number of knobs plus one. I've set it", + " up like we're modeling a tube screamer (drive/tone/level), so 1+3=4.", + " * I've messed around with weight decay, but I don't think it's actually", + " helpful. Still, it's in there so you can see how to use it if you're", + " curious.", + " * Doesn't seem like the model needs to be all that bigger than the", + " non-parametric version, even if you're modeling a fair number of knobs.", + " * You'll probably have a much larger dataset, so validating every so often ", + " in steps instead of epochs helps. Make sure to also set val_check_interval", + " under the trainer dict in your learning.json." + ], + "net": { + "name": "CatLSTM", + "config": { + "num_layers": 3, + "hidden_size": 24, + "train_truncate": 1024, + "train_burn_in": 4096, + "input_size": 4 + } + }, + "loss": { + "val_loss": "mse", + "mask_first": 4096 + }, + "optimizer": { + "lr": 0.01, + "weight_decay": 1e-09 + }, + "lr_scheduler": { + "class": "ExponentialLR", + "kwargs": { + "gamma": 0.995 + }, + "interval": "step", + "frequency": 200 + } +} +\ No newline at end of file diff --git a/bin/train/inputs/config_model.json b/bin/train/inputs/models/convnet.json diff --git a/bin/train/inputs/models/lstm.json b/bin/train/inputs/models/lstm.json @@ -0,0 +1,32 @@ +{ + "_comments": [ + "Reminders and tips:", + " * For your data, use nx=1, and use a long ny like 32768.", + " * For this model, it really helps if you have the delay in your data set", + " correctly. I've seen improvements fixing a delay that was off by 10", + " samples.", + " * gamma below is picked so that we end up with a learning rate of about", + " 1e-4 after 1000 epochs. I've found LSTMs to work with a pretty aggressive", + " learning rate that would be out of the question for other architectures.", + " * Number of units between 8 and 96, layers from 1 to 5 all seem to be ok", + " depending on the dataset, though bigger models might not make real-time." + ], + "net": { + "name": "LSTM", + "config": { + "hidden_size": 24, + "train_burn_in": 4096, + "train_truncate": 1024, + "num_layers": 3 + } + }, + "optimizer": { + "lr": 0.01 + }, + "lr_scheduler": { + "class": "ExponentialLR", + "kwargs": { + "gamma": 0.995 + } + } +} +\ No newline at end of file diff --git a/bin/train/main.py b/bin/train/main.py @@ -15,7 +15,7 @@ import pytorch_lightning as pl import torch from torch.utils.data import DataLoader -from nam.data import Split, init_dataset +from nam.data import ConcatDataset, ParametricDataset, Split, init_dataset from nam.models import Model torch.manual_seed(0) @@ -49,11 +49,32 @@ def plot( window_start: Optional[int] = None, window_end: Optional[int] = None, ): + if isinstance(ds, ConcatDataset): + + def extend_savefig(i, savefig): + if savefig is None: + return None + savefig = Path(savefig) + extension = savefig.name.split(".")[-1] + stem = savefig.name[: -len(extension) - 1] + return Path(savefig.parent, f"{stem}_{i}.{extension}") + + for i, ds_i in enumerate(ds.datasets): + plot( + model, + ds_i, + savefig=extend_savefig(i, savefig), + show=show and i == len(ds.datasets) - 1, + window_start=window_start, + window_end=window_end, + ) + return with torch.no_grad(): tx = len(ds.x) / 48_000 print(f"Run (t={tx})") t0 = time() - output = model(ds.x).flatten().cpu().numpy() + args = (ds.vals, ds.x) if isinstance(ds, ParametricDataset) else (ds.x,) + output = model(*args).flatten().cpu().numpy() t1 = time() print(f"Took {t1 - t0} ({tx / (t1 - t0):.2f}x)") @@ -72,6 +93,31 @@ def plot( plt.show() +def _create_callbacks(learning_config): + """ + Checkpointing, essentially + """ + # Checkpoints should be run every time the validation check is run. + # So base it off of learning_config["trainer"]["val_check_interval"] if it's there. + if "val_check_interval" in learning_config["trainer"]: + kwargs = { + "every_n_train_steps": learning_config["trainer"]["val_check_interval"] + } + else: + kwargs = {"every_n_epochs": 1} + + checkpoint_best = pl.callbacks.model_checkpoint.ModelCheckpoint( + filename="{epoch:04d}_{step}_{ESR:.3e}_{MSE:.3e}", + save_top_k=3, + monitor="val_loss", + **kwargs, + ) + checkpoint_last = pl.callbacks.model_checkpoint.ModelCheckpoint( + filename="checkpoint_last_{epoch:04d}_{step}", **kwargs + ) + return [checkpoint_best, checkpoint_last] + + def main(args): outdir = ensure_outdir(args.outdir) # Read @@ -100,17 +146,7 @@ def main(args): # ckpt_path = Path(outdir, "checkpoints") # ckpt_path.mkdir() trainer = pl.Trainer( - callbacks=[ - pl.callbacks.model_checkpoint.ModelCheckpoint( - filename="{epoch}_{val_loss:.6f}", - save_top_k=3, - monitor="val_loss", - every_n_epochs=1, - ), - pl.callbacks.model_checkpoint.ModelCheckpoint( - filename="checkpoint_last_{epoch:04d}", every_n_epochs=1 - ), - ], + callbacks=_create_callbacks(learning_config), default_root_dir=outdir, **learning_config["trainer"], ) diff --git a/nam/_version.py b/nam/_version.py @@ -1 +1 @@ -__version__ = "0.2.1" +__version__ = "0.3.0" diff --git a/nam/data.py b/nam/data.py @@ -4,10 +4,11 @@ import abc from collections import namedtuple +from copy import deepcopy from dataclasses import dataclass from enum import Enum from pathlib import Path -from typing import Optional, Sequence, Tuple, Union +from typing import Dict, Optional, Sequence, Tuple, Union import numpy as np import torch @@ -18,7 +19,7 @@ from tqdm import tqdm from ._core import InitializableFromConfig _REQUIRED_SAMPWIDTH = 3 -_REQUIRED_RATE = 48_000 +REQUIRED_RATE = 48_000 _REQUIRED_CHANNELS = 1 # Mono @@ -47,7 +48,7 @@ def wav_to_np( x_wav = wavio.read(str(filename)) assert x_wav.data.shape[1] == _REQUIRED_CHANNELS, "Mono" assert x_wav.sampwidth == _REQUIRED_SAMPWIDTH, "24-bit" - assert x_wav.rate == _REQUIRED_RATE, "48 kHz" + assert x_wav.rate == REQUIRED_RATE, "48 kHz" if require_match is not None: assert required_shape is None @@ -83,20 +84,20 @@ def wav_to_tensor( return torch.Tensor(arr) -def tensor_to_wav( - x: torch.Tensor, +def tensor_to_wav(x: torch.Tensor, *args, **kwargs): + np_to_wav(x.detach().cpu().numpy(), *args, **kwargs) + + +def np_to_wav( + x: np.ndarray, filename: Union[str, Path], rate: int = 48_000, sampwidth: int = 3, scale="none", ): wavio.write( - filename, - (torch.clamp(x, -1.0, 1.0) * (2 ** (8 * sampwidth - 1))) - .detach() - .cpu() - .numpy() - .astype(np.int32), + str(filename), + (np.clip(x, -1.0, 1.0) * (2 ** (8 * sampwidth - 1))).astype(np.int32), rate, scale=scale, sampwidth=sampwidth, @@ -105,13 +106,20 @@ def tensor_to_wav( class AbstractDataset(_Dataset, abc.ABC): @abc.abstractmethod - def __getitem__(self, idx) -> Tuple[torch.Tensor, torch.Tensor]: + def __getitem__( + self, idx + ) -> Union[ + Tuple[torch.Tensor, torch.Tensor], + Tuple[torch.Tensor, torch.Tensor, torch.Tensor], + ]: pass class Dataset(AbstractDataset, InitializableFromConfig): """ - Take a pair of matched audio files and serve input + output pairs + Take a pair of matched audio files and serve input + output pairs. + + No conditioning parameters associated w/ the data. """ def __init__( @@ -204,7 +212,8 @@ class Dataset(AbstractDataset, InitializableFromConfig): assert x.ndim == 1 assert y.ndim == 1 assert len(x) == len(y) - assert nx <= len(x) + if nx > len(x): + raise RuntimeError(f"Input of length {len(x)}, but receptive field is {nx}.") if ny is not None: assert ny <= len(y) - nx + 1 if torch.abs(y).max() >= 1.0: @@ -214,8 +223,71 @@ class Dataset(AbstractDataset, InitializableFromConfig): raise ValueError(msg) +class ParametricDataset(Dataset): + """ + Additionally tracks some conditioning parameters + """ + + def __init__(self, params: Dict[str, Union[bool, float, int]], *args, **kwargs): + super().__init__(*args, **kwargs) + self._keys = sorted(tuple(k for k in params.keys())) + self._vals = torch.Tensor([float(params[k]) for k in self._keys]) + + @classmethod + def init_from_config(cls, config): + if "slices" not in config: + return super().init_from_config(config) + else: + return cls.init_from_config_with_slices(config) + + @classmethod + def init_from_config_with_slices(cls, config): + config, x, y, slices = cls.parse_config_with_slices(config) + datasets = [] + for s in tqdm(slices, desc="Slices..."): + c = deepcopy(config) + start, stop, params = [s[k] for k in ("start", "stop", "params")] + c.update(x=x[start:stop], y=y[start:stop], params=params) + datasets.append(ParametricDataset(**c)) + return ConcatDataset(datasets) + + @classmethod + def parse_config(cls, config): + assert "slices" not in config + params = config["params"] + return { + "params": params, + "id": config.get("id"), + "common_params": config.get("common_params"), + "param_map": config.get("param_map"), + **super().parse_config(config), + } + + @classmethod + def parse_config_with_slices(cls, config): + slices = config["slices"] + config = super().parse_config(config) + x, y = [config.pop(k) for k in "xy"] + return config, x, y, slices + + def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + # FIXME don't override signature + x, y = super().__getitem__(idx) + return self.vals, x, y + + @property + def keys(self) -> Tuple[str]: + return self._keys + + @property + def vals(self): + return self._vals + + class ConcatDataset(AbstractDataset, InitializableFromConfig): - def __init__(self, datasets: Sequence[Dataset]): + def __init__(self, datasets: Sequence[Dataset], flatten=True): + if flatten: + datasets = self._flatten_datasets(datasets) self._validate_datasets(datasets) self._datasets = datasets @@ -229,36 +301,72 @@ class ConcatDataset(AbstractDataset, InitializableFromConfig): def __len__(self) -> int: return sum(len(d) for d in self._datasets) + @property + def datasets(self): + return self._datasets + @classmethod def parse_config(cls, config): + init = ( + ParametricDataset.init_from_config + if config["parametric"] + else Dataset.init_from_config + ) return { "datasets": tuple( - Dataset.init_from_config(c) - for c in tqdm(config["dataset_configs"], desc="Loading data") + init(c) for c in tqdm(config["dataset_configs"], desc="Loading data") ) } + def _flatten_datasets(self, datasets): + """ + If any dataset is a ConcatDataset, pull it out + """ + flattened = [] + for d in datasets: + if isinstance(d, ConcatDataset): + flattened.extend(d.datasets) + else: + flattened.append(d) + return flattened + @classmethod def _validate_datasets(cls, datasets: Sequence[Dataset]): Reference = namedtuple("Reference", ("index", "val")) - ref_ny = None + ref_keys, ref_ny = None, None for i, d in enumerate(datasets): ref_ny = Reference(i, d.ny) if ref_ny is None else ref_ny if d.ny != ref_ny.val: raise ValueError( - f"Mismatch between ny of datasets {ref_ny.index} ({ref_ny.val}) and" - f" {i} ({d.ny})" + f"Mismatch between ny of datasets {ref_ny.index} ({ref_ny.val}) and {i} ({d.ny})" ) + if isinstance(d, ParametricDataset): + val = d.keys + if ref_keys is None: + ref_keys = Reference(i, val) + if val != ref_keys.val: + raise ValueError( + f"Mismatch between keys of datasets {ref_keys.index} " + f"({ref_keys.val}) and {i} ({val})" + ) def init_dataset(config, split: Split) -> AbstractDataset: + parametric = config.get("parametric", False) base_config = config[split.value] common = config.get("common", {}) if isinstance(base_config, dict): - return Dataset.init_from_config({**common, **base_config}) + init = ( + ParametricDataset.init_from_config + if parametric + else Dataset.init_from_config + ) + return init({**common, **base_config}) elif isinstance(base_config, list): return ConcatDataset.init_from_config( - {"dataset_configs": [{**common, **c} for c in base_config]} + { + "parametric": parametric, + "dataset_configs": [{**common, **c} for c in base_config], + } ) - else: - raise TypeError(f"Unrecognized config type {type(base_config)}") + diff --git a/nam/models/_base.py b/nam/models/_base.py @@ -3,7 +3,7 @@ # Author: Steven Atkinson ([email protected]) import abc -from typing import Tuple +from typing import Optional, Tuple import numpy as np import torch @@ -13,7 +13,7 @@ from .._core import InitializableFromConfig from ._exportable import Exportable -class BaseNet(nn.Module, InitializableFromConfig, Exportable): +class _Base(nn.Module, InitializableFromConfig, Exportable): @abc.abstractproperty def pad_start_default(self) -> bool: pass @@ -25,7 +25,33 @@ class BaseNet(nn.Module, InitializableFromConfig, Exportable): """ pass - def forward(self, x: torch.Tensor, pad_start: bool = None): + @abc.abstractmethod + def forward(self, *args, **kwargs) -> torch.Tensor: + pass + + @abc.abstractmethod + def _forward(self, *args) -> torch.Tensor: + """ + The true forward method. + + :param x: (N,L1) + :return: (N,L1-RF+1) + """ + pass + + def _export_input_output( + self, seed=0, extra_length=13 + ) -> Tuple[torch.Tensor, torch.Tensor]: + x = torch.Tensor( + np.random.default_rng(seed).normal( + size=(self.receptive_field + extra_length,) + ) + ) + return x, self(x, pad_start=False) + + +class BaseNet(_Base): + def forward(self, x: torch.Tensor, pad_start: Optional[bool] = None): pad_start = self.pad_start_default if pad_start is None else pad_start scalar = x.ndim == 1 if scalar: @@ -47,12 +73,34 @@ class BaseNet(nn.Module, InitializableFromConfig, Exportable): """ pass - def _test_signal( - self, seed=0, extra_length=13 - ) -> Tuple[torch.Tensor, torch.Tensor]: - x = torch.Tensor( - np.random.default_rng(seed).normal( - size=(self.receptive_field + extra_length,) - ) - ) - return x, self(x, pad_start=False) + +class ParametricBaseNet(_Base): + """ + Parametric inputs + """ + + def forward( + self, params: torch.Tensor, x: torch.Tensor, pad_start: Optional[bool] = None + ): + pad_start = self.pad_start_default if pad_start is None else pad_start + scalar = x.ndim == 1 + if scalar: + x = x[None] + params = params[None] + if pad_start: + x = torch.cat((torch.zeros((len(x), self.receptive_field - 1)), x), dim=1) + y = self._forward(params, x) + if scalar: + y = y[0] + return y + + @abc.abstractmethod + def _forward(self, params: torch.Tensor, x: torch.Tensor) -> torch.Tensor: + """ + The true forward method. + + :param params: (N,D) + :param x: (N,L1) + :return: (N,L1-RF+1) + """ + pass diff --git a/nam/models/_exportable.py b/nam/models/_exportable.py @@ -3,7 +3,14 @@ # Author: Steven Atkinson ([email protected]) import abc +import json from pathlib import Path +from typing import Tuple + +import numpy as np + +from .._version import __version__ +from ..data import np_to_wav class Exportable(abc.ABC): @@ -11,7 +18,6 @@ class Exportable(abc.ABC): Interface for my custon export format for use in the plugin. """ - @abc.abstractmethod def export(self, outdir: Path): """ Interface for exporting. @@ -22,7 +28,27 @@ class Exportable(abc.ABC): :param outdir: Assumed to exist. Can be edited inside at will. """ - pass + training = self.training + self.eval() + with open(Path(outdir, "config.json"), "w") as fp: + json.dump( + { + "version": __version__, + "architecture": self.__class__.__name__, + "config": self._export_config(), + }, + fp, + indent=4, + ) + np.save(Path(outdir, "weights.npy"), self._export_weights()) + x, y = self._export_input_output() + np.save(Path(outdir, "inputs.npy"), x) + np.save(Path(outdir, "outputs.npy"), y) + np_to_wav(x, Path(outdir, "input.wav")) + np_to_wav(y, Path(outdir, "output.wav")) + + # And resume training state + self.train(training) @abc.abstractmethod def export_cpp_header(self, filename: Path): @@ -31,3 +57,27 @@ class Exportable(abc.ABC): as text """ pass + + @abc.abstractmethod + def _export_config(self): + """ + Creates the JSON of the model's archtecture hyperparameters (number of layers, + number of units, etc) + + :return: a JSON serializable object + """ + pass + + @abc.abstractmethod + def _export_input_output(self) -> Tuple[np.ndarray, np.ndarray]: + """ + Create an input and corresponding output signal to verify its behavior. + """ + pass + + @abc.abstractmethod + def _export_weights(self) -> np.ndarray: + """ + Flatten the weights out to a 1D array + """ + pass diff --git a/nam/models/_names.py b/nam/models/_names.py @@ -0,0 +1,13 @@ +# File: _names.py +# Created Date: Wednesday June 22nd 2022 +# Author: Steven Atkinson ([email protected]) + + +""" +Layer names +""" + +ACTIVATION_NAME = "activation" +BATCHNORM_NAME = "batchnorm" +CONV_NAME = "conv" +LAYERNORM_NAME = "layernorm" diff --git a/nam/models/base.py b/nam/models/base.py @@ -6,6 +6,8 @@ Lightning stuff """ +from dataclasses import dataclass +from enum import Enum from typing import Optional import pytorch_lightning as pl @@ -13,8 +15,55 @@ import torch import torch.nn as nn from .._core import InitializableFromConfig -from .linear import Linear from .conv_net import ConvNet +from .linear import Linear +from .parametric.catnets import CatLSTM +from .parametric.hyper_net import HyperConvNet +from .recurrent import LSTM + + +class ValidationLoss(Enum): + """ + mse: mean squared error + esr: error signal ratio (Eq. (10) from + https://www.mdpi.com/2076-3417/10/3/766/htm + NOTE: Be careful when computing ESR on minibatches! The average ESR over + a minibatch of data not the same as the ESR of all of the same data in + the minibatch calculated over at once (because of the denominator). + (Hint: think about what happens if one item in the minibatch is all + zeroes...) + """ + + MSE = "mse" + ESR = "esr" + + +@dataclass +class LossConfig(InitializableFromConfig): + """ + :param mask_first: How many of the first samples to ignore when comptuing the loss. + :param dc_weight: Weight for the DC loss term. If 0, ignored. + :params val_loss: Which loss to track for the best model checkpoint. + """ + + mask_first: int = 0 + dc_weight: float = 0.0 + val_loss: ValidationLoss = ValidationLoss.MSE + + @classmethod + def parse_config(cls, config): + config = super().parse_config(config) + dc_weight = config.get("dc_weight", 0.0) + val_loss = ValidationLoss(config.get("val_loss", "mse")) + mask_first = config.get("mask_first", 0) + return {"mask_first": mask_first, "dc_weight": dc_weight, "val_loss": val_loss} + + def apply_mask(self, *args): + """ + :param args: (L,) or (B,) + :return: (L-M,) or (B, L-M) + """ + return tuple(a[..., self.mask_first :] for a in args) class Model(pl.LightningModule, InitializableFromConfig): @@ -23,6 +72,7 @@ class Model(pl.LightningModule, InitializableFromConfig): net, optimizer_config: Optional[dict] = None, scheduler_config: Optional[dict] = None, + loss_config: Optional[LossConfig] = None, ): """ :param scheduler_config: contains @@ -38,6 +88,7 @@ class Model(pl.LightningModule, InitializableFromConfig): self._net = net self._optimizer_config = {} if optimizer_config is None else optimizer_config self._scheduler_config = scheduler_config + self._loss_config = LossConfig() if loss_config is None else loss_config @classmethod def init_from_config(cls, config): @@ -51,15 +102,48 @@ class Model(pl.LightningModule, InitializableFromConfig): @classmethod def parse_config(cls, config): + """ + e.g. + + { + "net": { + "name": "ConvNet", + "config": {...} + }, + "loss": { + "dc_weight": 0.1 + }, + "optimizer": { + "lr": 0.0003 + }, + "lr_scheduler": { + "class": "ReduceLROnPlateau", + "kwargs": { + "factor": 0.8, + "patience": 10, + "cooldown": 15, + "min_lr": 1e-06, + "verbose": true + }, + "monitor": "val_loss" + } + } + """ config = super().parse_config(config) net_config = config["net"] - net = {"Linear": Linear.init_from_config, "ConvNet": ConvNet.init_from_config}[ - net_config["name"] - ](net_config["config"]) + net = { + "CatLSTM": CatLSTM.init_from_config, + "ConvNet": ConvNet.init_from_config, + "HyperConvNet": HyperConvNet.init_from_config, + "Linear": Linear.init_from_config, + "LSTM": LSTM.init_from_config, + }[net_config["name"]](net_config["config"]) + loss_config = LossConfig.init_from_config(config.get("loss", {})) return { "net": net, "optimizer_config": config["optimizer"], "scheduler_config": config["lr_scheduler"], + "loss_config": loss_config, } @property @@ -84,14 +168,48 @@ class Model(pl.LightningModule, InitializableFromConfig): return self.net(*args, **kwargs) def _shared_step(self, batch): - sources, targets = batch - preds = self(sources, pad_start=False) - return nn.MSELoss()(preds, targets) + args, targets = batch[:-1], batch[-1] + preds = self(*args, pad_start=False) + + return preds, targets def training_step(self, batch, batch_idx): - return self._shared_step(batch) + preds, targets = self._shared_step(batch) + + loss = 0.0 + # Prediction aka MSE aka "ESR" loss + loss = loss + self._mse_loss(preds, targets) + + # DC loss + dc_weight = self._loss_config.dc_weight + if dc_weight > 0.0: + # Denominator could be a bad idea. I'm going to omit it esp since I'm + # using mini batches + mean_dims = torch.arange(1, preds.ndim).tolist() + dc_loss = nn.MSELoss()( + preds.mean(dim=mean_dims), targets.mean(dim=mean_dims) + ) + loss = loss + dc_weight * dc_loss + return loss def validation_step(self, batch, batch_idx): - val_loss = self._shared_step(batch) - self.log_dict({"val_loss": val_loss}) + preds, targets = self._shared_step(batch) + mse_loss = self._mse_loss(preds, targets) + esr_loss = self._esr_loss(preds, targets) + val_loss = {ValidationLoss.MSE: mse_loss, ValidationLoss.ESR: esr_loss}[ + self._loss_config.val_loss + ] + self.log_dict({"MSE": mse_loss, "ESR": esr_loss, "val_loss": val_loss}) return val_loss + + def _esr_loss(self, preds, targets): + """ + Error signal ratio aka ESR loss. + + Eq. (10), from + https://www.mdpi.com/2076-3417/10/3/766/htm + """ + return nn.MSELoss()(preds, targets) / nn.MSELoss()(targets, 0.0 * targets) + + def _mse_loss(self, preds, targets): + return nn.MSELoss()(preds, targets) diff --git a/nam/models/conv_net.py b/nam/models/conv_net.py @@ -3,6 +3,7 @@ # Author: Steven Atkinson ([email protected]) import json +import math from enum import Enum from functools import partial from pathlib import Path @@ -16,12 +17,9 @@ import torch.nn.functional as F from .. import __version__ -from ..data import wav_to_tensor +from ..data import REQUIRED_RATE, wav_to_tensor from ._base import BaseNet - -_CONV_NAME = "conv" -_BATCHNORM_NAME = "batchnorm" -_ACTIVATION_NAME = "activation" +from ._names import ACTIVATION_NAME, BATCHNORM_NAME, CONV_NAME class TrainStrategy(Enum): @@ -71,11 +69,11 @@ def _conv_net( def block(cin, cout, dilation): net = nn.Sequential() net.add_module( - _CONV_NAME, nn.Conv1d(cin, cout, 2, dilation=dilation, bias=not batchnorm) + CONV_NAME, nn.Conv1d(cin, cout, 2, dilation=dilation, bias=not batchnorm) ) if batchnorm: - net.add_module(_BATCHNORM_NAME, nn.BatchNorm1d(cout)) - net.add_module(_ACTIVATION_NAME, getattr(nn, activation)()) + net.add_module(BATCHNORM_NAME, nn.BatchNorm1d(cout)) + net.add_module(ACTIVATION_NAME, getattr(nn, activation)()) return net def check_and_expand(n, x): @@ -149,12 +147,12 @@ class ConvNet(BaseNet): @property def _activation(self): return ( - self._net._modules["block_0"]._modules[_ACTIVATION_NAME].__class__.__name__ + self._net._modules["block_0"]._modules[ACTIVATION_NAME].__class__.__name__ ) @property def _channels(self) -> int: - return self._net._modules["block_0"]._modules[_CONV_NAME].weight.shape[0] + return self._net._modules["block_0"]._modules[CONV_NAME].weight.shape[0] @property def _num_layers(self) -> int: @@ -162,16 +160,75 @@ class ConvNet(BaseNet): @property def _batchnorm(self) -> bool: - return _BATCHNORM_NAME in self._net._modules["block_0"]._modules + return BATCHNORM_NAME in self._net._modules["block_0"]._modules - def export(self, outdir: Path): + def export_cpp_header(self, filename: Path): + with TemporaryDirectory() as tmpdir: + tmpdir = Path(tmpdir) + self.export(Path(tmpdir)) + with open(Path(tmpdir, "config.json"), "r") as fp: + _c = json.load(fp) + version = _c["version"] + config = _c["config"] + with open(filename, "w") as f: + f.writelines( + ( + "#pragma once\n", + "// Automatically-generated model file\n", + "#include <vector>\n", + f'#define PYTHON_MODEL_VERSION "{version}"\n', + f"const int CHANNELS = {config['channels']};\n", + f"const bool BATCHNORM = {'true' if config['batchnorm'] else 'false'};\n", + "std::vector<int> DILATIONS{" + + ",".join([str(d) for d in config["dilations"]]) + + "};\n", + f"const std::string ACTIVATION = \"{config['activation']}\";\n", + "std::vector<float> PARAMS{" + + ",".join( + [f"{w:.16f}" for w in np.load(Path(tmpdir, "weights.npy"))] + ) + + "};\n", + ) + ) + + def _export_config(self): + return { + "channels": self._channels, + "dilations": self._get_dilations(), + "batchnorm": self._batchnorm, + "activation": self._activation, + } + + def _export_input_output(self, x=None) -> Tuple[np.ndarray, np.ndarray]: """ - Files created: - * config.json - * weights.npy - * input.npy - * output.npy + :return: (L,), (L,) + """ + with torch.no_grad(): + training = self.training + self.eval() + x = self._export_input_signal() if x is None else x + y = self(x, pad_start=True) + self.train(training) + return tuple(z.detach().cpu().numpy() for z in (x, y)) + + def _export_input_signal(self): + """ + :return: (L,) + """ + rate = REQUIRED_RATE + return torch.cat( + [ + torch.zeros((rate,)), + 0.5 + * torch.sin( + 2.0 * math.pi * 220.0 * torch.linspace(0.0, 1.0, rate + 1)[:-1] + ), + torch.zeros((rate,)), + ] + ) + def _export_weights(self) -> np.ndarray: + """ weights are serialized to weights.npy in the following order: * (expand: no params) * loop blocks 0,...,L-1 @@ -188,37 +245,17 @@ class ConvNet(BaseNet): * weight (C, 1, 1) * bias (1, 1) * (flatten: no params) - - A test input & output are also provided, input.npy and output.npy """ - training = self.training - self.eval() - with open(Path(outdir, "config.json"), "w") as fp: - json.dump( - { - "version": __version__, - "architecture": "ConvNet", - "config": { - "channels": self._channels, - "dilations": self._get_dilations(), - "batchnorm": self._batchnorm, - "activation": self._activation, - }, - }, - fp, - indent=4, - ) - params = [] for i in range(self._num_layers): block_name = f"block_{i}" block = self._net._modules[block_name] - conv = block._modules[_CONV_NAME] + conv = block._modules[CONV_NAME] params.append(conv.weight.flatten()) if conv.bias is not None: params.append(conv.bias.flatten()) if self._batchnorm: - bn = block._modules[_BATCHNORM_NAME] + bn = block._modules[BATCHNORM_NAME] params.append(bn.running_mean.flatten()) params.append(bn.running_var.flatten()) params.append(bn.weight.flatten()) @@ -228,45 +265,7 @@ class ConvNet(BaseNet): params.append(head.weight.flatten()) params.append(head.bias.flatten()) params = torch.cat(params).detach().cpu().numpy() - # Hope I don't regret using np.save... - np.save(Path(outdir, "weights.npy"), params) - - # And an input/output to verify correct computation: - x, y = self._test_signal() - np.save(Path(outdir, "input.npy"), x.detach().cpu().numpy()) - np.save(Path(outdir, "output.npy"), y.detach().cpu().numpy()) - - # And resume training state - self.train(training) - - def export_cpp_header(self, filename: Path): - with TemporaryDirectory() as tmpdir: - tmpdir = Path(tmpdir) - self.export(Path(tmpdir)) - with open(Path(tmpdir, "config.json"), "r") as fp: - _c = json.load(fp) - version = _c["version"] - config = _c["config"] - with open(filename, "w") as f: - f.writelines( - ( - "#pragma once\n", - "// Automatically-generated model file\n", - "#include <vector>\n", - f'#define PYTHON_MODEL_VERSION "{version}"\n', - f"const int CHANNELS = {config['channels']};\n", - f"const bool BATCHNORM = {'true' if config['batchnorm'] else 'false'};\n", - "std::vector<int> DILATIONS{" - + ",".join([str(d) for d in config["dilations"]]) - + "};\n", - f"const std::string ACTIVATION = \"{config['activation']}\";\n", - "std::vector<float> PARAMS{" - + ",".join( - [f"{w:.16f}" for w in np.load(Path(tmpdir, "weights.npy"))] - ) - + "};\n", - ) - ) + return params def _forward(self, x): y = self._net(x) @@ -276,7 +275,7 @@ class ConvNet(BaseNet): def _get_dilations(self) -> Tuple[int]: return tuple( - self._net._modules[f"block_{i}"]._modules[_CONV_NAME].dilation[0] + self._net._modules[f"block_{i}"]._modules[CONV_NAME].dilation[0] for i in range(self._num_blocks) ) diff --git a/nam/models/linear.py b/nam/models/linear.py @@ -55,7 +55,7 @@ class Linear(BaseNet): np.save(Path(outdir, "weights.npy"), params) # And an input/output to verify correct computation: - x, y = self._test_signal() + x, y = self._export_input_output() np.save(Path(outdir, "input.npy"), x.detach().cpu().numpy()) np.save(Path(outdir, "output.npy"), y.detach().cpu().numpy()) diff --git a/nam/models/parametric/__init__.py b/nam/models/parametric/__init__.py @@ -0,0 +1,4 @@ +# File: __init__.py +# Created Date: Sunday July 17th 2022 +# Author: Steven Atkinson ([email protected]) + diff --git a/nam/models/parametric/catnets.py b/nam/models/parametric/catnets.py @@ -0,0 +1,169 @@ +# File: catnets.py +# Created Date: Wednesday June 22nd 2022 +# Author: Steven Atkinson ([email protected]) + +""" +"Cat nets" -- parametric models where the parametric input is concatenated to the +input samples +""" + +import abc +from enum import Enum +from contextlib import contextmanager +from pathlib import Path +from typing import Dict, Tuple + +import torch + +from .._base import ParametricBaseNet +from ..recurrent import LSTM +from .params import Param + + +class _ShapeType(Enum): + CONV = "conv" # (B,C,L) + RNN = "rnn" # (B,L,D) + + +class _CatMixin(ParametricBaseNet): + """ + Parameteric nets that concatenate the params with the input at each time point + Mix in with a non-parametric class like + + ``` + class CatLSTM(LSTM, _CatMixin): + pass + ``` + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + # Hacky, see .export() + self._sidedoor_parametric_config = None + + @abc.abstractproperty + def _shape_type(self) -> _ShapeType: + pass + + @abc.abstractproperty + def _single_class(self): + """" + The class for the non-parametric model that this is extending + """ + # TODO verify that single class satisfies requirements + # ._export_weights() + # ._export_input_output() + pass # HACK + + def export(self, outdir: Path, parametric_config: Dict[str, Param]): + """ + Interface for exporting. + You should create at least a `config.json` containing the two fields: + * "version" (str) + * "architecture" (str) + * "config": (dict w/ other necessary data like tensor shapes etc) + + :param outdir: Assumed to exist. Can be edited inside at will. + """ + with self._use_parametric_config(parametric_config): + return super().export(outdir) + + def export_cpp_header(self, filename: Path, parametric_config: Dict[str, Param]): + with self._use_parametric_config(parametric_config): + return super().export_cpp_header(filename) + + def _export_config(self): + """ + Adds in the sidedoored parametric pieces + + :paramtric_config: the dict of parameter info (name, type, etc) + """ + config = super()._export_config() + if not isinstance(config, dict): + raise TypeError( + f"Parameteric models' base configs must be a dict; got {type(config)}" + ) + parametric_key = "parametric" + if parametric_key in config: + raise ValueError( + f'Already found parametric key "{parametric_key}" in base config dict.' + ) + # Yucky sidedoor + config[parametric_key] = { + k: v.to_json() for k, v in self._sidedoor_parametric_config.items() + } + return config + + def _forward(self, params, x): + """ + :param params: (N,D) + :param x: (N,L1) + + :return: (N,L2) + """ + sequence_length = x.shape[1] + x_augmented = ( + torch.cat( + [ + x[..., None], + torch.tile(params[:, None, :], (1, sequence_length, 1)), + ], + dim=2, + ) + if self._shape_type == _ShapeType.RNN + else torch.cat( + [x[:, None, :], torch.tile(params[..., None], (1, 1, sequence_length))], + dim=1, + ) + ) + return self._single_class._forward(self, x_augmented) + + @contextmanager + def _use_parametric_config(self, c): + """ + Sneaks in the parametric config while exporting + """ + try: + self._sidedoor_parametric_config = c + yield None + finally: + self._sidedoor_parametric_config = None + + +class CatLSTM(_CatMixin, LSTM): + @property + def _shape_type(self) -> _ShapeType: + return _ShapeType.RNN + + @property + def _single_class(self): + return LSTM + + def _append_default_params(self, x: torch.Tensor) -> torch.Tensor: + """ + Requires sidedoor'd params + + :param x: (B,L) + :return: (B,L,1+D) + """ + assert x.ndim == 2 + param_names = sorted([k for k in self._sidedoor_parametric_config.keys()]) + params = torch.Tensor( + [self._sidedoor_parametric_config[k].default_value for k in param_names] + ) + sequence_length = x.shape[1] + return torch.cat( + [ + x[:, :, None], + torch.tile(params[None, None, :], (1, sequence_length, 1)), + ], + dim=2, + ) + + def _get_initial_state(self) -> Tuple[torch.Tensor, torch.Tensor]: + inputs = self._append_default_params(torch.zeros((1, 48_000))) + return super()._get_initial_state(inputs=inputs) + + def _export_input_output(self): + x = self._append_default_params(self._export_input_signal()[None]) + return super()._export_input_output(x=x) diff --git a/nam/models/parametric/hyper_net.py b/nam/models/parametric/hyper_net.py @@ -0,0 +1,558 @@ +# File: hyper_net.py +# Created Date: Sunday May 29th 2022 +# Author: Steven Atkinson ([email protected]) + +import abc +import json +import math +from dataclasses import dataclass +from enum import Enum +from pathlib import Path +from tempfile import TemporaryDirectory +from typing import Any, Callable, List, Optional, Tuple + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.nn.init import ( + calculate_gain, + _calculate_correct_fan, + _calculate_fan_in_and_fan_out, +) + +from ..._version import __version__ +from .._base import ParametricBaseNet + + +class SpecialLayers(Enum): + CONV = "conv" + BATCHNORM = "batchnorm" + + +@dataclass +class LayerSpec: + """ + Helps the hypernet + """ + + special_type: Optional[str] + shapes: Tuple[Tuple[int]] + norms: Tuple[float] + biases: Tuple[float] + + +class _NetLayer(nn.Module, abc.ABC): + @abc.abstractproperty + def num_tensors(self) -> int: + pass + + @abc.abstractmethod + def get_spec(self) -> LayerSpec: + pass + + +class _Conv(nn.Conv1d, _NetLayer): + @property + def num_tensors(self): + return 2 if self.bias is not None else 1 + + def forward(self, params, inputs): + # Use depthwise convolution trick to process the convolutions together + cout, cin, kernel_size = self.weight.shape + n = len(params[0]) + weight = params[0].reshape((n * cout, cin, kernel_size)) # (N, CinCout) + bias = params[1].flatten() if self.bias is not None else None + groups = n + return F.conv1d( + inputs.reshape((1, n * cin, -1)), + weight, + bias=bias, + stride=self.stride, + padding=self.padding, + dilation=self.dilation, + groups=groups, + ).reshape((n, cout, -1)) + + def get_spec(self): + shapes = ( + (self.weight.shape,) + if self.bias is None + else (self.weight.shape, self.bias.shape) + ) + norms = ( + (self._weight_norm(),) + if self.bias is None + else (self._weight_norm(), self._bias_norm()) + ) + biases = (0,) if self.bias is None else (0, 0) + return LayerSpec(SpecialLayers("conv"), shapes, norms, biases) + + def _bias_norm(self): + # https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv1d + fan = _calculate_fan_in_and_fan_out(self.weight.data)[0] + bound = 1.0 / math.sqrt(fan) + std = math.sqrt(1.0 / 12.0) * (2 * bound) + # LayerNorm handles division by number of dimensions... + return std + + def _weight_norm(self): + """ + Std of the unfiorm distribution used in initialization + """ + # https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv1d + fan = _calculate_correct_fan(self.weight.data, "fan_in") + # Kaiming uniform w/ a=sqrt(5) + gain = calculate_gain("leaky_relu", 5.0) + std = gain / math.sqrt(fan) + # LayerNorm handles division by number of dimensions... + return std + + +class _BatchNorm(nn.BatchNorm1d, _NetLayer): + def __init__(self, num_features, *args, affine=True, **kwargs): + # Handle affine params outside of parent class + super().__init__(num_features, *args, affine=False, **kwargs) + self._num_features = num_features + assert affine + self._affine = affine + + @property + def num_tensors(self) -> int: + return 2 + + def get_spec(self) -> LayerSpec: + return LayerSpec( + SpecialLayers.BATCHNORM, + ((self._num_features,), (self._num_features,)), + (1.0e-5, 1.0e-5), + (1.0, 0.0), + ) + + def forward(self, params, inputs): + """ + Only change is we need to provide *params into F.batch_norm instead of + self.weight, self.bias + """ + # Also use "inputs" instead of "input" to not collide w/ builtin (ew) + weight, bias = [z[:, :, None] for z in params] + pre_affine = super().forward(inputs) + return weight * pre_affine + bias + + +class _Affine(nn.Module): + def __init__(self, scale: torch.Tensor, bias: torch.Tensor): + super().__init__() + self._weight = nn.Parameter(scale) + self._bias = nn.Parameter(bias) + + @property + def bias(self) -> nn.Parameter: + return self._bias + + @property + def weight(self) -> nn.Parameter: + return self._weight + + def forward(self, inputs): + return self._weight * inputs + self._bias + + +class HyperNet(nn.Module): + """ + MLP followed by layer norms on split-up dims + """ + + def __init__(self, d_in, net, numels, norms, biases): + super().__init__() + self._net = net + # Figure out the scale factor empirically + norm0 = net(torch.randn((10_000, d_in))).std(dim=0).mean().item() + self._cum_numel = torch.cat( + [torch.LongTensor([0]), torch.cumsum(torch.LongTensor(numels), dim=0)] + ) + affine_scale = torch.cat( + [torch.full((numel,), norm / norm0) for numel, norm in zip(numels, norms)] + ) + affine_bias = torch.cat( + [ + torch.full((numel,), bias, dtype=torch.float) + for numel, bias in zip(numels, biases) + ] + ) + self._affine = _Affine(affine_scale, affine_bias) + + @property + def batchnorm(self) -> bool: + """ + Does the hypernet use batchnorm layers + """ + return any(isinstance(m, nn.BatchNorm1d) for m in self.modules()) + + @property + def input_dim(self) -> int: + return self._net[0][0].weight.shape[1] + + @property + def num_layers(self) -> int: + return len([layer for layer in self._net if isinstance(layer, _HyperNetBlock)]) + + @property + def num_units(self) -> int: + return self._net[0][0].weight.shape[0] + + def forward(self, x) -> Tuple[torch.Tensor]: + """ + Just return a flat array of param tensors for now + """ + y = self._affine(self._net(x)) + return tuple( + y[:, i:j] for i, j in zip(self._cum_numel[:-1], self._cum_numel[1:]) + ) + + def get_export_params(self) -> np.ndarray: + params = [] + for block in self._net[:-1]: + linear = block[0] + params.append(linear.weight.flatten()) + params.append(linear.bias.flatten()) + if self.batchnorm: + bn = block[1] + params.append(bn.running_mean.flatten()) + params.append(bn.running_var.flatten()) + params.append(bn.weight.flatten()) + params.append(bn.bias.flatten()) + params.append(torch.Tensor([bn.eps]).to(bn.weight.device)) + assert len(block) <= 3, "Linear-(BN)-activation" + assert ( + len([p for p in block[-1].parameters()]) == 0 + ), "No params in activation" + head = self._net[-1] + params.append(head.weight.flatten()) + params.append(head.bias.flatten()) + affine = self._affine + params.append(affine.weight.flatten()) + params.append(affine.bias.flatten()) + return torch.cat(params).detach().cpu().numpy() + + +class _Activation(abc.ABC): + """ + Indicate that a module is an activation within the main net + """ + + @abc.abstractproperty + def name(self) -> str: + """ + What to call the layer by when making a config w/ it + """ + pass + + +def _extend_activation(C, name: str) -> _Activation: + class Activation(C, _NetLayer, _Activation): + @property + def name(self): + return name + + @property + def num_tensors(self) -> int: + return 0 + + def get_spec(self) -> LayerSpec: + return LayerSpec(None, (), (), ()) + + def forward(self, params, inputs): + return super().forward(inputs) + + return Activation + + +_Tanh = _extend_activation(nn.Tanh, "Tanh") +_ReLU = _extend_activation(nn.ReLU, "ReLU") +_Flatten = _extend_activation(nn.Flatten, "Flatten") # Hah, works + + +def _get_activation(name): + return {"Tanh": _Tanh, "ReLU": _ReLU}[name]() + + +class _HyperNetBlock(nn.Sequential): + """ + For IDing blocks of the hypernet + """ + + pass + + +class HyperConvNet(ParametricBaseNet): + """ + For parameteric data + + Conditioning is input to a hypernetwork that outputs the parameters of the conv net. + """ + + def __init__( + self, hyper_net: HyperNet, net: Callable[[Any, torch.Tensor], torch.Tensor] + ): + super().__init__() + self._hyper_net = hyper_net + self._net = net + + @classmethod + def parse_config(cls, config): + config = super().parse_config(config) + net, specs = cls._get_net(config["net"]) + hyper_net = cls._get_hyper_net(config["hyper_net"], specs) + return {"hyper_net": hyper_net, "net": net} + + @property + def pad_start_default(self) -> bool: + return True + + @property + def receptive_field(self) -> int: + # Last conv is the collapser--compensate w/ a minus 1 + return sum([m.dilation[0] for m in self._net if isinstance(m, _Conv)]) + 1 - 1 + + def export(self, outdir: Path): + """ + Files created: + * config.json + * weights.npy + * test_signal_params.npy + * test_signal_input.npy + * test_signal_output.npy + + weights are serialized to weights.npy in the following order: + * Hypernet + * Loop layers: + * Linear + * weights (din*dout) + * biases (dout) + * BN + * running_mean (d) + * running_var (d) + * weight (d) + * bias (d) + * eps () + * activation + * (Assume no params bc Tanh) + * Linear out + * weights (units*dy) + * bias (dy) + * affine + * weights (dy) + * bias (dy) + * Main net + (Layers are conv-BN-act) + (All params are outputted by the hypernet except the BatchNorm buffers!) + * Loop layers + * BN + * running_mean + * running_var + * eps () + * (flatten: no params) + + A test input & output are also provided, input.npy and output.npy + """ + training = self.training + self.eval() + with open(Path(outdir, "config.json"), "w") as fp: + json.dump(self._export_config(), fp, indent=4) + + # Hope I don't regret using np.save... + np.save(Path(outdir, "weights.npy"), self._export_weights()) + + # And an input/output to verify correct computation: + params, x, y = self._export_input_output() + np.save(Path(outdir, "test_signal_params.npy"), params.detach().cpu().numpy()) + np.save(Path(outdir, "test_signal_input.npy"), x.detach().cpu().numpy()) + np.save(Path(outdir, "test_signal_output.npy"), y.detach().cpu().numpy()) + + # And resume training state + self.train(training) + + def export_cpp_header(self, filename: Path): + with TemporaryDirectory() as tmpdir: + tmpdir = Path(tmpdir) + self.export(Path(tmpdir)) + with open(Path(tmpdir, "config.json"), "r") as fp: + _c = json.load(fp) + version = _c["version"] + config = _c["config"] + params = np.load(Path(tmpdir, "weights.npy")) + with open(filename, "w") as f: + f.writelines( + ( + "#pragma once\n", + "// Automatically-generated model file\n", + "// HyperConvNet model\n" "#include <vector>\n", + f'#define PYTHON_MODEL_VERSION "{version}"\n', + f'const int HYPER_NET_INPUT_DIM = {config["hyper_net"]["input_dim"]};\n', + f'const int HYPER_NET_NUM_LAYERS = {config["hyper_net"]["num_layers"]};\n', + f'const int HYPER_NET_NUM_UNITS = {config["hyper_net"]["num_units"]};\n', + f'const int HYPER_NET_BATCHNORM = {"true" if config["hyper_net"]["batchnorm"] else "false"};\n', + f"const int CHANNELS = {config['net']['channels']};\n", + f"const bool BATCHNORM = {'true' if config['net']['batchnorm'] else 'false'};\n", + "std::vector<int> DILATIONS{" + + ",".join([str(d) for d in config["net"]["dilations"]]) + + "};\n", + f"const std::string ACTIVATION = \"{config['net']['activation']}\";\n", + "std::vector<float> PARAMS{" + + ",".join([f"{w:.16f}" for w in params]) + + "};\n", + ) + ) + + @classmethod + def _get_net(cls, config): + channels = config["channels"] + dilations = config["dilations"] + batchnorm = config["batchnorm"] + activation = config["activation"] + + layers = [] + layer_specs = [] + cin = 1 + for dilation in dilations: + layer = _Conv(cin, channels, 2, dilation=dilation, bias=not batchnorm) + layers.append(layer) + layer_specs.append(layer.get_spec()) + if batchnorm: + # Slow momentum on main net bc it's wild + layer = _BatchNorm(channels, momentum=0.01) + layers.append(layer) + layer_specs.append(layer.get_spec()) + layer = _get_activation(activation) + layers.append(layer) + layer_specs.append(layer.get_spec()) + cin = channels + layer = _Conv(cin, 1, 1) + layers.append(layer) + layer_specs.append(layer.get_spec()) + layer = _Flatten() + layers.append(layer) + layer_specs.append(layer.get_spec()) + + return nn.ModuleList(layers), layer_specs + + @classmethod + def _get_hyper_net(cls, config, specs) -> HyperNet: + def block(dx, dy, batchnorm) -> _HyperNetBlock: + layer_list = [nn.Linear(dx, dy)] + if batchnorm: + layer_list.append(nn.BatchNorm1d(dy)) + layer_list.append(nn.ReLU()) + return _HyperNetBlock(*layer_list) + + num_inputs = config["num_inputs"] + num_layers = config["num_layers"] + num_units = config["num_units"] + batchnorm = config["batchnorm"] + # Flatten specs + numels = [np.prod(np.array(shape)) for spec in specs for shape in spec.shapes] + norms = [norm for spec in specs for norm in spec.norms] + biases = [bias for spec in specs for bias in spec.biases] + num_outputs = sum(numels) + + din, layer_list = num_inputs, [] + for _ in range(num_layers): + layer_list.append(block(din, num_units, batchnorm)) + din = num_units + layer_list.append(nn.Linear(din, num_outputs)) + net = nn.Sequential(*layer_list) + + return HyperNet(num_inputs, net, numels, norms, biases) + + @property + def _activation(self) -> str: + """ + What activation does the main net use + """ + for m in self._net.modules(): + if isinstance(m, _Activation): + return m.name + + @property + def _batchnorm(self) -> bool: + return any(isinstance(x, _BatchNorm) for x in self._net) + + @property + def _channels(self) -> int: + return self._net[0].weight.shape[0] + + @property + def _net_no_head(self): + return self._net[:-2] + + def _forward(self, params: torch.Tensor, x: torch.Tensor) -> torch.Tensor: + net_params = self._hyper_net(params) + i = 0 + for m in self._net: + j = i + m.num_tensors + x = m(net_params[i:j], x) + i = j + assert j == len(net_params) + return x + + def _get_dilations(self) -> List[int]: + dilations = [] + for ( + layer + ) in self._net_no_head: # Last two layers are a 1D conv head and flatten + if isinstance(layer, _Conv): + dilations.append(layer.dilation[0]) + return dilations + + def _export_config(self): + return { + "version": __version__, + "architecture": "HyperConvNet", + "config": { + "hyper_net": { + "input_dim": self._hyper_net.input_dim, + "num_layers": self._hyper_net.num_layers, + "num_units": self._hyper_net.num_units, + "batchnorm": self._hyper_net.batchnorm, + }, + "net": { + "channels": self._channels, + "dilations": self._get_dilations(), + "batchnorm": self._batchnorm, + "activation": self._activation, + }, + }, + } + + def _export_weights(self) -> np.ndarray: + """ + Flatten the parameters of the network to be exported. + See doctsring for .export() for ensured layout. + """ + return np.concatenate( + [self._hyper_net.get_export_params(), self._export_net_weights()] + ) + + def _export_net_weights(self) -> np.ndarray: + """ + Only the buffers--parameters are outputted by the hypernet! + """ + params = [] + for bn in self._net_no_head: + if isinstance(bn, _BatchNorm): + params.append(bn.running_mean.flatten()) + params.append(bn.running_var.flatten()) + params.append(torch.Tensor([bn.eps]).to(bn.running_mean.device)) + return ( + np.array([]) + if len(params) == 0 + else torch.cat(params).detach().cpu().numpy() + ) + + def _export_input_output(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + params = torch.randn((self._hyper_net.input_dim,)) + x = torch.randn((2 * self.receptive_field,)) + x = 0.5 * x / x.abs().max() + y = self(params, x) + return params, x, y diff --git a/nam/models/parametric/params.py b/nam/models/parametric/params.py @@ -0,0 +1,71 @@ +# File: params.py +# Created Date: Sunday July 17th 2022 +# Author: Steven Atkinson ([email protected]) + +""" +Handling parametric inputs +""" + +import abc +import inspect +from dataclasses import dataclass, fields +from enum import Enum +from typing import Any + +from ..._core import InitializableFromConfig + + +# class ParamType(Enum): +# CONTINUOUS = "continuous" +# BOOLEAN = "boolean" + + +@dataclass +class Param(InitializableFromConfig): + default_value: Any + + @classmethod + def init_from_config(cls, config): + C, kwargs = cls.parse_config(config) + return C(**kwargs) + + @classmethod + def parse_config(cls, config): + for C in [ + _C + for _C in globals().values() + if inspect.isclass(_C) and _C is not Param and issubclass(_C, Param) + ]: + if C.typestr() == config["type"]: + config.pop("type") + break + else: + raise ValueError(f"Unrecognized aprameter type {config['type']}") + return C, config + + @abc.abstractclassmethod + def typestr(cls) -> str: + pass + + def to_json(self): + return { + "type": self.typestr(), + **{f.name: getattr(self, f.name) for f in fields(self)}, + } + + +@dataclass +class BooleanParam(Param): + @classmethod + def typestr(cls) -> str: + return "boolean" + + +@dataclass +class ContinuousParam(Param): + minval: float + maxval: float + + @classmethod + def typestr(self) -> str: + return "continuous" diff --git a/nam/models/recurrent.py b/nam/models/recurrent.py @@ -0,0 +1,183 @@ +# File: recurrent.py +# Created Date: Saturday July 2nd 2022 +# Author: Steven Atkinson ([email protected]) + +""" +Recurrent models (LSTM) + +TODO batch_first=False (I get it...) +""" + +import math +from pathlib import Path +from typing import Optional, Tuple + +import numpy as np +import torch +import torch.nn as nn + +from ..data import REQUIRED_RATE +from ._base import BaseNet + + +class LSTM(BaseNet): + """ + ABC for recurrent architectures + """ + + def __init__( + self, + hidden_size, + train_burn_in: Optional[int] = None, + train_truncate: Optional[int] = None, + input_size: int = 1, + **lstm_kwargs, + ): + """ + :param hidden_size: for LSTM + :param train_burn_in: Detach calculations from first (this many) samples when + training to burn in the hidden state. + :param train_truncate: detach the hidden & cell states every this many steps + during training so that backpropagation through time is faster + to simulate + better starting states for h(t0)&c(t0) (instead of zeros) + TODO recognition head to start the hidden state in a good place? + :param input_size: Usually 1 (mono input). A catnet extending this might change + it and provide the parametric inputs as additional input dimensions. + """ + super().__init__() + if "batch_first" in lstm_kwargs: + raise ValueError("batch_first cannot be set.") + self._input_size = input_size + self._core = nn.LSTM( + self._input_size, hidden_size, batch_first=True, **lstm_kwargs + ) + self._head = nn.Linear(hidden_size, 1) + self._train_burn_in = train_burn_in + self._train_truncate = train_truncate + + @property + def receptive_field(self) -> int: + return 1 + + @property + def pad_start_default(self) -> bool: + # I should simplify this... + return True + + def export_cpp_header(self, filename: Path): + raise NotImplementedError() + + def _forward(self, x): + """ + :param x: (B,L) or (B,L,D) + :return: (B,L) + """ + if x.ndim==2: + x = x[:, :, None] + if not self.training or self._train_truncate is None: + output_features = self._core(x)[0] + else: + last_hidden_state = None + output_features_list = [] + if self._train_burn_in is not None: + last_output_features, last_hidden_state = self._core( + x[:, : self._train_burn_in, :] + ) + output_features_list.append(last_output_features.detach()) + burn_in_offset = 0 if self._train_burn_in is None else self._train_burn_in + for i in range(burn_in_offset, x.shape[1], self._train_truncate): + last_output_features, last_hidden_state = self._core( + x[:, i : i + self._train_truncate, :,], + None + if last_hidden_state is None + else tuple(z.detach() for z in last_hidden_state), + ) + output_features_list.append(last_output_features) + output_features = torch.cat(output_features_list, dim=1) + return self._head(output_features)[:, :, 0] + + def _export_cell_weights( + self, i: int, hidden_state: torch.Tensor, cell_state: torch.Tensor + ) -> np.ndarray: + """ + * weight matrix (xh -> ifco) + * bias vector + * Initial hidden state + * Initial cell state + """ + + tensors = [ + torch.cat( + [ + getattr(self._core, f"weight_ih_l{i}").data, + getattr(self._core, f"weight_hh_l{i}").data, + ], + dim=1, + ), + getattr(self._core, f"bias_ih_l{i}").data + + getattr(self._core, f"bias_hh_l{i}").data, + hidden_state, + cell_state, + ] + return np.concatenate([z.detach().cpu().numpy().flatten() for z in tensors]) + + def _export_config(self): + return { + "input_size": self._core.input_size, + "hidden_size": self._core.hidden_size, + "num_layers": self._core.num_layers, + } + + def _export_input_output(self, x=None): + x = self._export_input_signal()[None, :, None] if x is None else x + y = self._head(self._core(x, self._get_initial_state())[0][0])[:, 0] + return x[0, :, 0].detach().cpu().numpy(), y.detach().cpu().numpy().flatten() + + def _export_input_signal(self): + rate = REQUIRED_RATE + return torch.cat( + [ + torch.zeros((rate,)), + 0.5 + * torch.sin( + 2.0 * math.pi * 220.0 * torch.linspace(0.0, 1.0, rate + 1)[:-1] + ), + torch.zeros((rate,)), + ] + ) + + def _export_weights(self): + """ + * Loop over cells: + * weight matrix (xh -> ifco) + * bias vector + * Initial hidden state + * Initial cell state + * Head weights + * Head bias + """ + return np.concatenate( + [ + self._export_cell_weights(i, h, c) + for i, (h, c) in enumerate(zip(*self._get_initial_state())) + ] + + [ + self._head.weight.data.detach().cpu().numpy().flatten(), + self._head.bias.data.detach().cpu().numpy().flatten(), + ] + ) + + def _get_initial_state(self, inputs=None) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Convenience function to find a good hidden state to start the plugin at + + DX=input size + L=num layers + S=sequence length + :param inputs: (1,S,DX) + + :return: (L,DH), (L,DH) + """ + inputs = torch.zeros((1, 48_000, 1)) if inputs is None else inputs + _, (h, c) = self._core(inputs) + return h, c diff --git a/tests/test_nam/test_data.py b/tests/test_nam/test_data.py @@ -0,0 +1,24 @@ +# File: test_data.py +# Created Date: Friday May 6th 2022 +# Author: Steven Atkinson ([email protected]) + +import pytest +import torch + +from nam import data + + +class TestDataset(object): + def test_init(self): + x, y = self._create_xy() + data.Dataset(x, y, 3, None) + + def test_init_zero_delay(self): + """ + Assert https://github.com/sdatkinson/neural-amp-modeler/issues/15 fixed + """ + x, y = self._create_xy() + data.Dataset(x, y, 3, None, delay=0) + + def _create_xy(self): + return 0.99 * (2.0 * torch.rand((2, 7)) - 1.0) # Don't clip diff --git a/tests/test_nam/test_models/__init__.py b/tests/test_nam/test_models/__init__.py diff --git a/tests/test_nam/test_models/base.py b/tests/test_nam/test_models/base.py @@ -0,0 +1,31 @@ +# File: base.py +# Created Date: Saturday June 4th 2022 +# Author: Steven Atkinson ([email protected]) + +import abc +from pathlib import Path +from tempfile import TemporaryDirectory + + +class Base(abc.ABC): + @classmethod + def setup_class(cls, C, args=None, kwargs=None): + cls._C = C + cls._args = () if args is None else args + cls._kwargs = {} if kwargs is None else kwargs + + def test_init(self, args=None, kwargs=None): + obj = self._construct(args=args, kwargs=kwargs) + assert isinstance(obj, self._C) + + def test_export(self, args=None, kwargs=None): + model = self._construct(args=args, kwargs=kwargs) + with TemporaryDirectory() as tmpdir: + model.export(Path(tmpdir)) + + def _construct(self, C=None, args=None, kwargs=None): + C = self._C if C is None else C + args = args if args is not None else self._args + kwargs = kwargs if kwargs is not None else self._kwargs + return C(*args, **kwargs) + diff --git a/tests/test_nam/test_models/test_conv_net.py b/tests/test_nam/test_models/test_conv_net.py @@ -0,0 +1,40 @@ +# File: test_conv_net.py +# Created Date: Friday May 6th 2022 +# Author: Steven Atkinson ([email protected]) + +from pathlib import Path +from tempfile import TemporaryDirectory + +import pytest + +from nam.models import conv_net + +from .base import Base + + +class TestConvNet(Base): + @classmethod + def setup_class(cls): + channels = 3 + dilations = [1, 2, 4] + return super().setup_class( + conv_net.ConvNet, + (channels, dilations), + {"batchnorm": False, "activation": "Tanh"}, + ) + + @pytest.mark.parametrize( + ("batchnorm,activation"), ((False, "ReLU"), (True, "Tanh")) + ) + def test_init(self, batchnorm, activation): + super().test_init(kwargs={"batchnorm": batchnorm, "activation": activation}) + + @pytest.mark.parametrize( + ("batchnorm,activation"), ((False, "ReLU"), (True, "Tanh")) + ) + def test_export(self, batchnorm, activation): + super().test_export(kwargs={"batchnorm": batchnorm, "activation": activation}) + + +if __name__ == "__main__": + pytest.main() diff --git a/tests/test_nam/test_models/test_parametric/__init__.py b/tests/test_nam/test_models/test_parametric/__init__.py @@ -0,0 +1,4 @@ +# File: __init__.py +# Created Date: Sunday July 17th 2022 +# Author: Steven Atkinson ([email protected]) + diff --git a/tests/test_nam/test_models/test_parametric/test_catnets.py b/tests/test_nam/test_models/test_parametric/test_catnets.py @@ -0,0 +1,50 @@ +# File: test_catnets.py +# Created Date: Sunday July 17th 2022 +# Author: Steven Atkinson ([email protected]) + +from pathlib import Path +from tempfile import TemporaryDirectory + +import pytest + +from ..base import Base + +from nam.models.parametric import catnets, params + + +_mock_params = { + "gain": params.ContinuousParam(0.5, 0.0, 1.0), + "tone": params.ContinuousParam(0.5, 0.0, 1.0), + "level": params.ContinuousParam(0.5, 0.0, 1.0), +} + + +class _ParametricBase(Base): + pass + + +class TestCatLSTM(_ParametricBase): + @classmethod + def setup_class(cls): + # Using init_from_config + return super().setup_class( + catnets.CatLSTM, + args=(), + kwargs={ + "num_layers": 1, + "hidden_size": 2, + "train_truncate": 11, + "train_burn_in": 7, + "input_size": 1 + len(_mock_params), + }, + ) + + def test_export(self, args=None, kwargs=None): + # Override to provide params info + model = self._construct(args=args, kwargs=kwargs) + with TemporaryDirectory() as tmpdir: + model.export(Path(tmpdir), _mock_params) + + +if __name__ == "__main__": + pytest.main() diff --git a/tests/test_nam/test_models/test_parametric/test_hyper_net.py b/tests/test_nam/test_models/test_parametric/test_hyper_net.py @@ -0,0 +1,86 @@ +# File: test_hyper_net.py +# Created Date: Saturday June 4th 2022 +# Author: Steven Atkinson ([email protected]) + +from pathlib import Path +from tempfile import TemporaryDirectory + +import pytest + +from nam.models.parametric import hyper_net + +from ..base import Base + + +class TestHyperConvNet(Base): + @classmethod + def setup_class(cls): + return super().setup_class(hyper_net.HyperConvNet, (), {}) + + @pytest.mark.parametrize( + ("batchnorm,activation"), ((False, "ReLU"), (True, "Tanh")) + ) + def test_init(self, batchnorm, activation): + # TODO refactor + channels = 3 + dilations = [1, 2, 4] + assert isinstance( + self._construct( + self._config( + batchnorm=batchnorm, + activation=activation, + dilations=dilations, + channels=channels, + ) + ), + hyper_net.HyperConvNet, + ) + + @pytest.mark.parametrize( + ("batchnorm,activation"), ((False, "ReLU"), (True, "Tanh")) + ) + def test_export(self, batchnorm, activation): + # TODO refactor + channels = 3 + dilations = [1, 2, 4] + model = self._construct( + self._config( + batchnorm=batchnorm, + activation=activation, + dilations=dilations, + channels=channels, + ) + ) + with TemporaryDirectory() as tmpdir: + model.export(Path(tmpdir)) + + def test_export_cpp_header(self): + # TODO refactor + with TemporaryDirectory() as tmpdir: + self._construct().export_cpp_header(Path(tmpdir, "model.h")) + + def _config(self, batchnorm=True, activation="Tanh", dilations=None, channels=7): + dilations = [1, 2, 4] if dilations is None else dilations + return { + "net": { + "channels": channels, + "dilations": dilations, + "batchnorm": batchnorm, + "activation": activation, + }, + "hyper_net": { + "num_inputs": 3, + "num_layers": 2, + "num_units": 11, + "batchnorm": True, + }, + } + + def _construct(self, config=None): + # Override for simplicity... + config = self._config() if config is None else config + return self._C.init_from_config(config) + + +if __name__ == "__main__": + pytest.main() diff --git a/tests/test_nam/test_models/test_recurrent.py b/tests/test_nam/test_models/test_recurrent.py @@ -0,0 +1,19 @@ +# File: test_recurrent.py +# Created Date: Sunday July 17th 2022 +# Author: Steven Atkinson ([email protected]) + +from .base import Base + +from nam.models import recurrent + + +class TestLSTM(Base): + @classmethod + def setup_class(cls): + hidden_size = 3 + return super().setup_class( + recurrent.LSTM, + args=(hidden_size,), + kwargs={"train_burn_in": 3, "train_truncate": 5, "num_layers": 2}, + ) +