neural-amp-modeler

Neural network emulator for guitar amplifiers
Log | Files | Refs | README | LICENSE

commit aa489d720868354495f84e1f9f035e3869dd4dea
parent c80d4d44af2c80af985f5978f733334c9bbfd60b
Author: Steven Atkinson <[email protected]>
Date:   Sat,  5 Jan 2019 13:20:54 -0500

Batched predicts to address memory issues, default n_train

Diffstat:
Mmodels.py | 24+++++++++++++++++-------
1 file changed, 17 insertions(+), 7 deletions(-)

diff --git a/models.py b/models.py @@ -10,7 +10,7 @@ import os import json -def from_json(f, n_train, checkpoint_path=None): +def from_json(f, n_train=1, checkpoint_path=None): if isinstance(f, str): with open(f, "r") as json_file: f = json.load(json_file) @@ -119,18 +119,28 @@ class Autoregressive(Model): def input_length(self): return self._input_length - def predict(self, x): + def predict(self, x, batch_size=None, verbose=False): """ Return 1D array of predictions same length as x """ n = x.size + batch_size = batch_size or n # Pad x with leading zeros: x = np.concatenate((np.zeros(self.input_length - 1), x)) - # Reshape into a batch: - x_mtx = np.stack([x[i: i + self.input_length] for i in range(n)]) - # Predict and flatten. - return self.sess.run(self.prediction, feed_dict={self.x: x_mtx}) \ - .flatten() + i = 0 + y = [] + while i < n: + if verbose: + print("model.predict {}/{}".format(i, n)) + this_batch_size = np.min([batch_size, n - i]) + # Reshape into a batch: + x_mtx = np.stack([x[j: j + self.input_length] + for j in range(i, i + this_batch_size)]) + # Predict and flatten. + y.append(self.sess.run(self.prediction, feed_dict={self.x: x_mtx}) \ + .flatten()) + i += this_batch_size + return np.concatenate(y) class FullyConnected(Autoregressive):