commit 7808e90e2a8527adfae42bca4942c3399f2d8f46
parent 090fd22bf60e89c34740ca356dae61eed19db873
Author: Steven Atkinson <[email protected]>
Date: Mon, 15 Jan 2024 01:19:37 -0800
Simplify the Colab notebook and use GUI elements (#368)
Diffstat:
1 file changed, 51 insertions(+), 121 deletions(-)
diff --git a/bin/train/easy_colab.ipynb b/bin/train/easy_colab.ipynb
@@ -1,94 +1,42 @@
{
"cells": [
{
- "attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "TC3XkMetGWtK"
},
"source": [
"# Neural Amp Modeler (\"Easy Mode\" Trainer)\n",
- "This notebook allows you to train a neural amp model based on a pair of input/output WAV files that you have of the amp you want to model.\n",
- "\n",
"**Note**:\n",
"This notebook is meant to be used on [Google Colab](https://colab.research.google.com/github/sdatkinson/neural-amp-modeler/blob/main/bin/train/easy_colab.ipynb).\n",
"\n",
"🔶**Before you run**🔶\n",
"\n",
- "Make sure to get a GPU! (From the upper-left menu, click Runtime->Change runtime type->Select \"GPU\" from the \"Hardware accelerator dropdown menu)\n",
- "\n",
- "âš **Warning**âš \n",
- "\n",
- "Google Colab GPU instances only last for 12 hours.\n",
- "Plan your training accordingly!\n",
- "\n",
- "## Steps:\n",
- "1. Get your data\n",
- "2. Installation\n",
- "3. Enter metadata\n",
- "4. Train!\n",
- "5. Check the results and download your model"
+ "Make sure to get a GPU! (From the upper-left menu, click Runtime->Change runtime type->Select \"GPU\" from the \"Hardware accelerator dropdown menu)"
]
},
{
- "attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "5CQleTk7GJV8"
},
"source": [
"## Step 1: Get data\n",
- "We're gonna need data. \"Easy mode\" takes out a lot of the guesswork.\n",
- "\n",
- "### Step 1.1: Download the capture signal\n",
- "\"Easy mode\" uses a pre-crafted \"capture signal\".\n",
- "Download it here: [v3_0_0.wav](https://drive.google.com/file/d/1Pgf8PdE0rKB1TD4TRPKbpNo1ByR3IOm9/view?usp=drive_link).\n",
- "\n",
- "### Step 1.2 Reamp your gear\n",
- "Then reamp the gear you want to model using it. Save that reamp as \"output.wav\".\n",
- "**Please use 48kHz, 24-bit, mono.** We'll support other sample rates etc in the future; sit tight!\n",
- "\n",
- "### Step 1.3: upload!\n",
- "Upload the input (DI) and output (amped) files you want to use by clicking the Folder icon on the left ⬅ and then clicking the upload icon."
+ "* **Download the reamp signal.** Here: [v3_0_0.wav](https://drive.google.com/file/d/1Pgf8PdE0rKB1TD4TRPKbpNo1ByR3IOm9/view?usp=drive_link).\n",
+ "* **Reamp your gear.** Then reamp the gear you want to model using it. Save that reamp as \"output.wav\". *Note: Use 48kHz, 24-bit, mono.* For other sample rates, use [the CLI trainer](https://github.com/sdatkinson/neural-amp-modeler).\n",
+ "* **Upload your files.** Upload the input (DI) and output (amped) files you want to use by clicking the Folder icon on the left ⬅ and then clicking the upload icon or by dragging the files into the panel."
]
},
{
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {
- "id": "2g_4GtFuGlO8"
- },
- "source": [
- "## Step 2: Installation\n",
- "Install `nam` into this Colab instance by running the next cell (hover over and click the play button that appears in the upper-left corner):"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "vYQIpWr5EYRb"
- },
- "outputs": [],
- "source": [
- "!pip install neural-amp-modeler\n",
- "# Hint: use the next line instead for the very latest!\n",
- "# !pip install git+https://github.com/sdatkinson/neural-amp-modeler.git@main\n",
- "\n",
- "from nam.train.colab import run as _run\n",
- "run = _run\n",
- "%load_ext tensorboard"
- ]
- },
- {
- "attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "7tRCyI_YjZjj"
},
"source": [
- "## Step 3: Enter metadata\n",
- "Tell us about what you're modeling!"
+ "## Step 2: Train!\n",
+ "Configure your training run below, then hit the Play button to start training!\n",
+ "\n",
+ "🕙NOTE: At default settings, training will take just over 10 minutes.🕙"
]
},
{
@@ -100,95 +48,76 @@
},
"outputs": [],
"source": [
+ "try:\n",
+ " import nam\n",
+ "except ImportError as e:\n",
+ " !pip install neural-amp-modeler\n",
+ " # Hint: use the next line instead for the very latest!\n",
+ " # !pip install git+https://github.com/sdatkinson/neural-amp-modeler.git@main\n",
+ "\n",
+ "from nam.train.colab import run\n",
+ "from nam.models.metadata import GearType, ToneType, UserMetadata\n",
+ "\n",
+ "%load_ext tensorboard\n",
+ "\n",
"from functools import partial\n",
"\n",
"import ipywidgets as widgets\n",
- "from nam.models.metadata import GearType, ToneType, UserMetadata\n",
- "#@markdown NAM name\n",
+ "\n",
+ "# NOTE: Enums need to be handled carefully since the values need to be supplied literally here!\n",
+ "\n",
+ "#@markdown # Training parameters\n",
+ "epochs = 100 #@param {type: \"number\"}\n",
+ "architecture = \"standard\" #@param [\"standard\", \"lite\", \"feather\", \"nano\"] {type: \"string\"}\n",
+ "fit_cab = False #@param {type: \"boolean\"}\n",
+ "ignore_checks = False #@param {type: \"boolean\"}\n",
+ "\n",
+ "#@markdown # Metadata\n",
+ "use_metadata = False #@param {type: \"boolean\"}\n",
"name = \"My model\" #@param {type:\"string\"}\n",
- "#@markdown Modeled by:\n",
"modeled_by = \"Your name\" #@param {type:\"string\"}\n",
- "#@markdown Gear make:\n",
"gear_make = \"GearCo\" #@param {type:\"string\"}\n",
- "#@markdown Gear model:\n",
- "gear_model = \"GearAmp\" #@param {type:\"string\"}\n",
- "#@markdown Gear type:\n",
- "# This needs to be a literal. You need to change it by hand if you change the enum!\n",
- "gear_type = \"Pick from: amp, pedal, pedal_amp, amp_cab, amp_pedal_cab, preamp, studio\" #@param {type:\"string\"}\n",
- "#@markdown Tone type:\n",
- "tone_type = \"Pick from: clean, overdrive, crunch, hi_gain, fuzz\" #@param {type:\"string\"}\n",
+ "gear_model = \"GearName\" #@param {type:\"string\"}\n",
+ "gear_type = \"pedal\" #@param [\"amp\", \"pedal\", \"pedal_amp\", \"amp_cab\", \"amp_pedal_cab\", \"preamp\", \"studio\"] {type:\"string\"}\n",
+ "tone_type = \"overdrive\" #@param [\"clean\", \"overdrive\", \"crunch\", \"hi_gain\", \"fuzz\"] {type:\"string\"}\n",
"\n",
"def _verbose_enum(E, val):\n",
" try:\n",
" return E(val)\n",
" except ValueError as e:\n",
" raise ValueError(\n",
- " str(e) \n",
- " + \"\\nValid choices are: \" \n",
+ " str(e)\n",
+ " + \"\\nValid choices are: \"\n",
" + \", \".join(list(x.value for x in E))\n",
" )\n",
"\n",
- "user_metadata = UserMetadata(\n",
- " name=name, \n",
- " modeled_by=modeled_by, \n",
- " gear_make=gear_make, \n",
- " gear_model=gear_model, \n",
- " gear_type=_verbose_enum(GearType, gear_type.lower()), \n",
+ "user_metadata = None if not use_metadata else UserMetadata(\n",
+ " name=name,\n",
+ " modeled_by=modeled_by,\n",
+ " gear_make=gear_make,\n",
+ " gear_model=gear_model,\n",
+ " gear_type=_verbose_enum(GearType, gear_type.lower()),\n",
" tone_type=_verbose_enum(ToneType, tone_type.lower())\n",
")\n",
- "run = partial(_run, user_metadata=user_metadata)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {
- "id": "WVkBZg3-jZjl"
- },
- "source": [
- "## Step 4: Train!\n",
- "Here we go!\n",
- "\n",
- "🕙Training will go through 100 epochs and take just over 10 minutes.🕙\n",
+ "run_partial = partial(run, user_metadata=user_metadata)\n",
"\n",
- "If you want a better model, you can try training for more \"**epochs**\"--just put in a \n",
- "different number before hitting go!\n",
- "\n",
- "\"**architecture**\" selects from several presets for the size of the network. This trades off\n",
- "modeling quality for how expensive the resulting model will be to run.\n",
- "\n",
- " \"**lite**\" models will run approximately **1.5 times** faster than \"**standard**\".\n",
- "\n",
- " \"**feather**\" models will run more than **2 times** faster than \"**standard**\".\n",
- "\n",
- " \"**nano**\" models will run about **2.5 times** faster than \"**standard**\".\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "xOzo3NxqjZjl"
- },
- "outputs": [],
- "source": [
"%tensorboard --logdir /content/lightning_logs\n",
"run(\n",
- " epochs=100,\n",
- " architecture=\"standard\", # standard, lite, feather, nano\n",
- " fit_cab=False, # Change me to True for full-rig modeling!\n",
- " ignore_checks=False # Change to True to train anyways with potentially bad data\n",
+ " epochs=epochs,\n",
+ " architecture=architecture,\n",
+ " fit_cab=fit_cab, # Change me to True for full-rig modeling!\n",
+ " ignore_checks=ignore_checks, # Change to True to train anyways with potentially bad data\n",
+ " user_metadata=user_metadata\n",
")"
]
},
{
- "attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "823KJ_L0Rchp"
},
"source": [
- "## Step 5: Check the results and download your model\n",
+ "## Step 3: Check the results and download your model\n",
"We're done!\n",
"\n",
"Have a look at the plot above to see how your model compares to the real gear you're modeling.\n",
@@ -233,4 +162,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
-}
+}
+\ No newline at end of file