neural-amp-modeler

Neural network emulator for guitar amplifiers
Log | Files | Refs | README | LICENSE

commit 7808e90e2a8527adfae42bca4942c3399f2d8f46
parent 090fd22bf60e89c34740ca356dae61eed19db873
Author: Steven Atkinson <[email protected]>
Date:   Mon, 15 Jan 2024 01:19:37 -0800

Simplify the Colab notebook and use GUI elements (#368)


Diffstat:
Mbin/train/easy_colab.ipynb | 172++++++++++++++++++++++++-------------------------------------------------------
1 file changed, 51 insertions(+), 121 deletions(-)

diff --git a/bin/train/easy_colab.ipynb b/bin/train/easy_colab.ipynb @@ -1,94 +1,42 @@ { "cells": [ { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "TC3XkMetGWtK" }, "source": [ "# Neural Amp Modeler (\"Easy Mode\" Trainer)\n", - "This notebook allows you to train a neural amp model based on a pair of input/output WAV files that you have of the amp you want to model.\n", - "\n", "**Note**:\n", "This notebook is meant to be used on [Google Colab](https://colab.research.google.com/github/sdatkinson/neural-amp-modeler/blob/main/bin/train/easy_colab.ipynb).\n", "\n", "🔶**Before you run**🔶\n", "\n", - "Make sure to get a GPU! (From the upper-left menu, click Runtime->Change runtime type->Select \"GPU\" from the \"Hardware accelerator dropdown menu)\n", - "\n", - "⚠**Warning**⚠\n", - "\n", - "Google Colab GPU instances only last for 12 hours.\n", - "Plan your training accordingly!\n", - "\n", - "## Steps:\n", - "1. Get your data\n", - "2. Installation\n", - "3. Enter metadata\n", - "4. Train!\n", - "5. Check the results and download your model" + "Make sure to get a GPU! (From the upper-left menu, click Runtime->Change runtime type->Select \"GPU\" from the \"Hardware accelerator dropdown menu)" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "5CQleTk7GJV8" }, "source": [ "## Step 1: Get data\n", - "We're gonna need data. \"Easy mode\" takes out a lot of the guesswork.\n", - "\n", - "### Step 1.1: Download the capture signal\n", - "\"Easy mode\" uses a pre-crafted \"capture signal\".\n", - "Download it here: [v3_0_0.wav](https://drive.google.com/file/d/1Pgf8PdE0rKB1TD4TRPKbpNo1ByR3IOm9/view?usp=drive_link).\n", - "\n", - "### Step 1.2 Reamp your gear\n", - "Then reamp the gear you want to model using it. Save that reamp as \"output.wav\".\n", - "**Please use 48kHz, 24-bit, mono.** We'll support other sample rates etc in the future; sit tight!\n", - "\n", - "### Step 1.3: upload!\n", - "Upload the input (DI) and output (amped) files you want to use by clicking the Folder icon on the left ⬅ and then clicking the upload icon." + "* **Download the reamp signal.** Here: [v3_0_0.wav](https://drive.google.com/file/d/1Pgf8PdE0rKB1TD4TRPKbpNo1ByR3IOm9/view?usp=drive_link).\n", + "* **Reamp your gear.** Then reamp the gear you want to model using it. Save that reamp as \"output.wav\". *Note: Use 48kHz, 24-bit, mono.* For other sample rates, use [the CLI trainer](https://github.com/sdatkinson/neural-amp-modeler).\n", + "* **Upload your files.** Upload the input (DI) and output (amped) files you want to use by clicking the Folder icon on the left ⬅ and then clicking the upload icon or by dragging the files into the panel." ] }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "2g_4GtFuGlO8" - }, - "source": [ - "## Step 2: Installation\n", - "Install `nam` into this Colab instance by running the next cell (hover over and click the play button that appears in the upper-left corner):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "vYQIpWr5EYRb" - }, - "outputs": [], - "source": [ - "!pip install neural-amp-modeler\n", - "# Hint: use the next line instead for the very latest!\n", - "# !pip install git+https://github.com/sdatkinson/neural-amp-modeler.git@main\n", - "\n", - "from nam.train.colab import run as _run\n", - "run = _run\n", - "%load_ext tensorboard" - ] - }, - { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "7tRCyI_YjZjj" }, "source": [ - "## Step 3: Enter metadata\n", - "Tell us about what you're modeling!" + "## Step 2: Train!\n", + "Configure your training run below, then hit the Play button to start training!\n", + "\n", + "🕙NOTE: At default settings, training will take just over 10 minutes.🕙" ] }, { @@ -100,95 +48,76 @@ }, "outputs": [], "source": [ + "try:\n", + " import nam\n", + "except ImportError as e:\n", + " !pip install neural-amp-modeler\n", + " # Hint: use the next line instead for the very latest!\n", + " # !pip install git+https://github.com/sdatkinson/neural-amp-modeler.git@main\n", + "\n", + "from nam.train.colab import run\n", + "from nam.models.metadata import GearType, ToneType, UserMetadata\n", + "\n", + "%load_ext tensorboard\n", + "\n", "from functools import partial\n", "\n", "import ipywidgets as widgets\n", - "from nam.models.metadata import GearType, ToneType, UserMetadata\n", - "#@markdown NAM name\n", + "\n", + "# NOTE: Enums need to be handled carefully since the values need to be supplied literally here!\n", + "\n", + "#@markdown # Training parameters\n", + "epochs = 100 #@param {type: \"number\"}\n", + "architecture = \"standard\" #@param [\"standard\", \"lite\", \"feather\", \"nano\"] {type: \"string\"}\n", + "fit_cab = False #@param {type: \"boolean\"}\n", + "ignore_checks = False #@param {type: \"boolean\"}\n", + "\n", + "#@markdown # Metadata\n", + "use_metadata = False #@param {type: \"boolean\"}\n", "name = \"My model\" #@param {type:\"string\"}\n", - "#@markdown Modeled by:\n", "modeled_by = \"Your name\" #@param {type:\"string\"}\n", - "#@markdown Gear make:\n", "gear_make = \"GearCo\" #@param {type:\"string\"}\n", - "#@markdown Gear model:\n", - "gear_model = \"GearAmp\" #@param {type:\"string\"}\n", - "#@markdown Gear type:\n", - "# This needs to be a literal. You need to change it by hand if you change the enum!\n", - "gear_type = \"Pick from: amp, pedal, pedal_amp, amp_cab, amp_pedal_cab, preamp, studio\" #@param {type:\"string\"}\n", - "#@markdown Tone type:\n", - "tone_type = \"Pick from: clean, overdrive, crunch, hi_gain, fuzz\" #@param {type:\"string\"}\n", + "gear_model = \"GearName\" #@param {type:\"string\"}\n", + "gear_type = \"pedal\" #@param [\"amp\", \"pedal\", \"pedal_amp\", \"amp_cab\", \"amp_pedal_cab\", \"preamp\", \"studio\"] {type:\"string\"}\n", + "tone_type = \"overdrive\" #@param [\"clean\", \"overdrive\", \"crunch\", \"hi_gain\", \"fuzz\"] {type:\"string\"}\n", "\n", "def _verbose_enum(E, val):\n", " try:\n", " return E(val)\n", " except ValueError as e:\n", " raise ValueError(\n", - " str(e) \n", - " + \"\\nValid choices are: \" \n", + " str(e)\n", + " + \"\\nValid choices are: \"\n", " + \", \".join(list(x.value for x in E))\n", " )\n", "\n", - "user_metadata = UserMetadata(\n", - " name=name, \n", - " modeled_by=modeled_by, \n", - " gear_make=gear_make, \n", - " gear_model=gear_model, \n", - " gear_type=_verbose_enum(GearType, gear_type.lower()), \n", + "user_metadata = None if not use_metadata else UserMetadata(\n", + " name=name,\n", + " modeled_by=modeled_by,\n", + " gear_make=gear_make,\n", + " gear_model=gear_model,\n", + " gear_type=_verbose_enum(GearType, gear_type.lower()),\n", " tone_type=_verbose_enum(ToneType, tone_type.lower())\n", ")\n", - "run = partial(_run, user_metadata=user_metadata)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "WVkBZg3-jZjl" - }, - "source": [ - "## Step 4: Train!\n", - "Here we go!\n", - "\n", - "🕙Training will go through 100 epochs and take just over 10 minutes.🕙\n", + "run_partial = partial(run, user_metadata=user_metadata)\n", "\n", - "If you want a better model, you can try training for more \"**epochs**\"--just put in a \n", - "different number before hitting go!\n", - "\n", - "\"**architecture**\" selects from several presets for the size of the network. This trades off\n", - "modeling quality for how expensive the resulting model will be to run.\n", - "\n", - " \"**lite**\" models will run approximately **1.5 times** faster than \"**standard**\".\n", - "\n", - " \"**feather**\" models will run more than **2 times** faster than \"**standard**\".\n", - "\n", - " \"**nano**\" models will run about **2.5 times** faster than \"**standard**\".\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "xOzo3NxqjZjl" - }, - "outputs": [], - "source": [ "%tensorboard --logdir /content/lightning_logs\n", "run(\n", - " epochs=100,\n", - " architecture=\"standard\", # standard, lite, feather, nano\n", - " fit_cab=False, # Change me to True for full-rig modeling!\n", - " ignore_checks=False # Change to True to train anyways with potentially bad data\n", + " epochs=epochs,\n", + " architecture=architecture,\n", + " fit_cab=fit_cab, # Change me to True for full-rig modeling!\n", + " ignore_checks=ignore_checks, # Change to True to train anyways with potentially bad data\n", + " user_metadata=user_metadata\n", ")" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "823KJ_L0Rchp" }, "source": [ - "## Step 5: Check the results and download your model\n", + "## Step 3: Check the results and download your model\n", "We're done!\n", "\n", "Have a look at the plot above to see how your model compares to the real gear you're modeling.\n", @@ -233,4 +162,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} +} +\ No newline at end of file