neural-amp-modeler

Neural network emulator for guitar amplifiers
Log | Files | Refs | README | LICENSE

commit 2928d242a931d9e51e3331f4eac875599753c4dc
parent 8a631bcf96cf74dd823565f3b10ac682b7230b73
Author: Steven Atkinson <[email protected]>
Date:   Thu, 16 Mar 2023 22:32:33 -0500

Models compute their output level (#135)

Implement BaseNet._loudness()
Diffstat:
AMANIFEST.in | 1+
Mnam/models/_base.py | 29+++++++++++++++++++++++++++--
Anam/models/_resources/loudness_input.wav | 0
Msetup.py | 1+
Atests/test_nam/test_models/test_base.py | 53+++++++++++++++++++++++++++++++++++++++++++++++++++++
5 files changed, 82 insertions(+), 2 deletions(-)

diff --git a/MANIFEST.in b/MANIFEST.in @@ -0,0 +1 @@ +include nam/models/_resources/loudness_input.wav diff --git a/nam/models/_base.py b/nam/models/_base.py @@ -2,8 +2,15 @@ # Created Date: Tuesday February 8th 2022 # Author: Steven Atkinson ([email protected]) +""" +The foundation of the model without the PyTorch Lightning attributes (losses, training +steps) +""" + import abc import math +import pkg_resources +from pathlib import Path from typing import Any, Optional, Tuple import numpy as np @@ -11,7 +18,7 @@ import torch import torch.nn as nn from .._core import InitializableFromConfig -from ..data import REQUIRED_RATE +from ..data import REQUIRED_RATE, wav_to_tensor from ._exportable import Exportable @@ -31,6 +38,21 @@ class _Base(nn.Module, InitializableFromConfig, Exportable): def forward(self, *args, **kwargs) -> torch.Tensor: pass + def _loudness(self, gain: float=1.0) -> float: + """ + How loud is this model when given a standardized input? + In dB + + :param gain: Multiplies input signal + """ + x = wav_to_tensor(pkg_resources.resource_filename("nam", "models/_resources/loudness_input.wav")) + y = self._at_nominal_settings(gain * x) + return 10.0 * torch.log10(torch.mean(torch.square(y))).item() + + def _at_nominal_settings(self, x: torch.Tensor) -> torch.Tensor: + # parametric?... + raise NotImplementedError() + @abc.abstractmethod def _forward(self, *args) -> torch.Tensor: """ @@ -65,7 +87,7 @@ class _Base(nn.Module, InitializableFromConfig, Exportable): x.detach().cpu().numpy(), self(*args, x, pad_start=True).detach().cpu().numpy() ) - + class BaseNet(_Base): def forward(self, x: torch.Tensor, pad_start: Optional[bool] = None): @@ -79,6 +101,9 @@ class BaseNet(_Base): if scalar: y = y[0] return y + + def _at_nominal_settings(self, x: torch.Tensor) -> torch.Tensor: + return self(x) @abc.abstractmethod def _forward(self, x: torch.Tensor) -> torch.Tensor: diff --git a/nam/models/_resources/loudness_input.wav b/nam/models/_resources/loudness_input.wav Binary files differ. diff --git a/setup.py b/setup.py @@ -31,6 +31,7 @@ setup( url="https://github.com/sdatkinson/", install_requires=requirements, packages=find_packages(), + include_package_data=True, entry_points={ 'console_scripts': [ 'nam = nam.train.gui:run', diff --git a/tests/test_nam/test_models/test_base.py b/tests/test_nam/test_models/test_base.py @@ -0,0 +1,52 @@ +# File: test_base.py +# Created Date: Thursday March 16th 2023 +# Author: Steven Atkinson ([email protected]) + +import math +from pathlib import Path + +import numpy as np +import pytest +import torch + +from nam.models._base import BaseNet + +def test_loudness(): + class C(BaseNet): + def __init__(self, gain: float, *args, **kwargs): + super().__init__(*args, **kwargs) + self.gain = gain + + @property + def pad_start_default(self) -> bool: + return True + + @property + def receptive_field(self) -> int: + return 1 + + def export_cpp_header(self, filename: Path): + pass + + def _export_config(self): + pass + + def _export_weights(self) -> np.ndarray: + pass + + def _forward(self, x: torch.Tensor) -> torch.Tensor: + return self.gain * x + + obj = C(1.0) + y = obj._loudness() + obj.gain = 2.0 + y2 = obj._loudness() + assert isinstance(y, float) + # 2x louder = +6dB + assert y2 == pytest.approx(y + 20.0 * math.log10(2.0)) + + + + +if __name__ == "__main__": + pytest.main() +\ No newline at end of file