commit f880d18974b5694d5cd865925475f753b29292e9
parent 398dc194b4299503dd2224df67fd2566b2379d41
Author: [email protected] <[email protected]>
Date: Mon, 19 Sep 2022 14:49:04 +0100
Init tensor from initializer_list, slicing
Diffstat:
6 files changed, 527 insertions(+), 100 deletions(-)
diff --git a/include/kfr/base/expression.hpp b/include/kfr/base/expression.hpp
@@ -249,8 +249,8 @@ KFR_INTRINSIC index_t axis_stop(const shape<outdims>& sh)
template <size_t width = 0, index_t Axis = infinite_size, typename Out, typename In, size_t gw = 1,
typename Tin = expression_value_type<In>, typename Tout = expression_value_type<Out>,
index_t outdims = expression_dims<Out>, CMT_ENABLE_IF(expression_dims<Out> > 0)>
-static auto tprocess(Out&& out, In&& in, shape<outdims> start = 0, shape<outdims> size = infinite_size,
- csize_t<gw> = {}) -> shape<outdims>
+static auto tprocess(Out&& out, In&& in, shape<outdims> start = shape<outdims>(0),
+ shape<outdims> size = shape<outdims>(infinite_size), csize_t<gw> = {}) -> shape<outdims>
{
using internal::axis_start;
using internal::axis_stop;
@@ -274,7 +274,7 @@ static auto tprocess(Out&& out, In&& in, shape<outdims> start = 0, shape<outdims
const shape<outdims> outshape = shapeof(out);
const shape<indims> inshape = shapeof(in);
if (CMT_UNLIKELY(!internal_generic::can_assign_from(outshape, inshape)))
- return { 0 };
+ return shape<outdims>{ 0 };
shape<outdims> stop = min(start.add_inf(size), outshape);
index_t in_size = 0;
diff --git a/include/kfr/base/impl/static_array.hpp b/include/kfr/base/impl/static_array.hpp
@@ -67,7 +67,7 @@ struct static_array_base<T, csizes_t<indices...>>
constexpr static_array_base& operator=(static_array_base&&) = default;
template <int dummy = 0, CMT_ENABLE_IF(dummy == 0 && static_size > 1)>
- KFR_MEM_INTRINSIC constexpr static_array_base(value_type value)
+ KFR_MEM_INTRINSIC constexpr explicit static_array_base(value_type value)
{
(static_cast<void>(array[indices] = value), ...);
}
diff --git a/include/kfr/base/new_expressions.hpp b/include/kfr/base/new_expressions.hpp
@@ -239,7 +239,7 @@ template <typename Arg, index_t Axis, size_t N, typename Traits = expression_tra
KFR_INTRINSIC vec<T, N> get_elements(const xreverse<Arg>& self, const shape<Traits::dims>& index,
const axis_params<Axis, N>& sh)
{
- return reverse(get_elements(self.first(), self.input_shape.sub(index).sub(N), sh));
+ return reverse(get_elements(self.first(), self.input_shape.sub(index).sub(shape<Traits::dims>(N)), sh));
}
} // namespace CMT_ARCH_NAME
@@ -340,7 +340,7 @@ struct expression_traits<xreshape<Arg, OutDims>> : expression_traits_defaults
{
return self.out_shape;
}
- KFR_MEM_INTRINSIC constexpr static shape<dims> shapeof() { return { 0 }; }
+ KFR_MEM_INTRINSIC constexpr static shape<dims> shapeof() { return shape<dims>{ 0 }; }
};
inline namespace CMT_ARCH_NAME
@@ -374,16 +374,19 @@ KFR_INTRINSIC vec<T, N> get_elements(const xreshape<Arg, outdims>& self, const s
vec<T, N> result;
bool done = false;
- cforeach(cvalseq_t<index_t, indims, 0>{},
- [&](auto n) CMT_INLINE_LAMBDA
- {
- constexpr index_t axis = val_of<decltype(n)>({});
- if (!done && diff_idx[axis] == N - 1)
+ if (diff_idx.sum() == N - 1)
+ {
+ cforeach(cvalseq_t<index_t, indims, 0>{},
+ [&](auto n) CMT_INLINE_LAMBDA
{
- result = get_elements(self.first(), first_idx, axis_params<axis, N>{});
- done = true;
- }
- });
+ constexpr index_t axis = val_of<decltype(n)>({});
+ if (!done && diff_idx[axis] == N - 1)
+ {
+ result = get_elements(self.first(), first_idx, axis_params<axis, N>{});
+ done = true;
+ }
+ });
+ }
if (!done)
{
@@ -391,10 +394,9 @@ KFR_INTRINSIC vec<T, N> get_elements(const xreshape<Arg, outdims>& self, const s
CMT_LOOP_NOUNROLL
for (size_t i = 0; i < N; ++i)
{
- tmp[i] = get_elements(
- self.first(),
- self.in_shape.from_flat(self.out_shape.to_flat(index.add_at(i, cindex<Axis>))),
- axis_params<indims - 1, 1>{})
+ shape<Traits::dims> idx = index.add_at(i, cindex<Axis>);
+ tmp[i] = get_elements(self.first(), self.in_shape.from_flat(self.out_shape.to_flat(idx)),
+ axis_params<indims - 1, 1>{})
.front();
}
result = tmp;
diff --git a/include/kfr/base/shape.hpp b/include/kfr/base/shape.hpp
@@ -33,6 +33,7 @@
#include "../simd/vec.hpp"
#include <bitset>
+#include <optional>
namespace kfr
{
@@ -48,7 +49,8 @@ using signed_index_t = int32_t;
using index_t = uint32_t;
using signed_index_t = int32_t;
#endif
-constexpr inline index_t max_index_t = std::numeric_limits<index_t>::max();
+constexpr inline index_t max_index_t = std::numeric_limits<index_t>::max();
+constexpr inline signed_index_t max_sindex_t = std::numeric_limits<signed_index_t>::max();
template <index_t val>
using cindex_t = cval_t<index_t, val>;
@@ -88,7 +90,7 @@ namespace internal_generic
template <index_t dims>
KFR_INTRINSIC bool increment_indices(shape<dims>& indices, const shape<dims>& start, const shape<dims>& stop,
index_t dim = dims - 1);
-}
+} // namespace internal_generic
template <index_t dims>
struct shape : static_array_base<index_t, csizeseq_t<dims>>
@@ -109,6 +111,16 @@ struct shape : static_array_base<index_t, csizeseq_t<dims>>
}
}
+ index_t trailing_zeros() const
+ {
+ for (index_t i = 0; i < dims; ++i)
+ {
+ if (revindex(i) != 0)
+ return i;
+ }
+ return dims;
+ }
+
bool le(const shape& other) const
{
if constexpr (dims == 1)
@@ -136,6 +148,7 @@ struct shape : static_array_base<index_t, csizeseq_t<dims>>
}
shape add(const shape& other) const { return **this + *other; }
shape sub(const shape& other) const { return **this - *other; }
+ index_t sum() const { return hsum(**this); }
shape add_inf(const shape& other) const
{
@@ -358,29 +371,35 @@ struct cursor
shape<Dims> maximum;
};
+using opt_index_t = std::optional<signed_index_t>;
+
struct tensor_range
{
- index_t start = 0;
- index_t stop = max_index_t;
- index_t step = 1;
-
- constexpr KFR_INTRINSIC index_t size() const { return stop - start; }
+ opt_index_t start;
+ opt_index_t stop;
+ opt_index_t step;
};
-constexpr KFR_INTRINSIC tensor_range tstart(index_t start, index_t step = 1)
+constexpr KFR_INTRINSIC tensor_range trange(std::optional<signed_index_t> start = std::nullopt,
+ std::optional<signed_index_t> stop = std::nullopt,
+ std::optional<signed_index_t> step = std::nullopt)
{
- return { start, max_index_t, step };
+ return { start, stop, step };
}
-constexpr KFR_INTRINSIC tensor_range tstop(index_t stop, index_t step = 1) { return { 0, stop, step }; }
-constexpr KFR_INTRINSIC tensor_range trange(index_t start, index_t stop, index_t step = 1)
+
+constexpr KFR_INTRINSIC tensor_range tall() { return trange(); }
+constexpr KFR_INTRINSIC tensor_range tstart(signed_index_t start, signed_index_t step = 1)
{
- return { start, stop, step };
+ return trange(start, std::nullopt, step);
+}
+constexpr KFR_INTRINSIC tensor_range tstop(signed_index_t stop, signed_index_t step = 1)
+{
+ return trange(std::nullopt, stop, step);
}
-constexpr KFR_INTRINSIC tensor_range trange_n(index_t start, index_t size, index_t step = 1)
+constexpr KFR_INTRINSIC tensor_range tstep(signed_index_t step = 1)
{
- return { start, start + size, step };
+ return trange(std::nullopt, std::nullopt, step);
}
-constexpr KFR_INTRINSIC tensor_range tall() { return { 0, max_index_t, 1 }; }
namespace internal_generic
{
@@ -400,32 +419,6 @@ constexpr KFR_INTRINSIC shape<dims> strides_for_shape(const shape<dims>& sh, ind
return strides;
}
-template <typename Index>
-constexpr KFR_INTRINSIC index_t get_start(const Index& idx)
-{
- if constexpr (std::is_same_v<std::decay_t<Index>, tensor_range>)
- {
- return idx.start;
- }
- else
- {
- static_assert(std::is_convertible_v<Index, index_t>);
- return static_cast<index_t>(idx);
- }
-}
-template <typename Index>
-constexpr KFR_INTRINSIC index_t get_stop(const Index& idx)
-{
- if constexpr (std::is_same_v<std::decay_t<Index>, tensor_range>)
- {
- return idx.stop;
- }
- else
- {
- static_assert(std::is_convertible_v<Index, index_t>);
- return static_cast<index_t>(idx) + 1;
- }
-}
template <size_t dims, size_t outdims, bool... ranges>
constexpr KFR_INTRINSIC shape<outdims> compact_shape(const shape<dims>& in)
{
@@ -499,7 +492,7 @@ constexpr shape<outdims> common_shape(const shape<dims1>& shape1, const shape<di
else
{
// broadcast failed
- result = 0;
+ result = shape<outdims>(0);
return result;
}
}
@@ -619,7 +612,7 @@ KFR_INTRINSIC shape<dims> increment_indices_return(const shape<dims>& indices, c
}
else
{
- return null_index;
+ return shape<dims>(null_index);
}
}
@@ -628,6 +621,63 @@ constexpr KFR_INTRINSIC size_t count_dimensions()
{
return ((std::is_same_v<std::decay_t<Index>, tensor_range> ? 1 : 0) + ...);
}
+
+template <typename U>
+struct type_of_list
+{
+ using value_type = U;
+};
+
+template <typename U>
+struct type_of_list<std::initializer_list<U>>
+{
+ using value_type = typename type_of_list<U>::value_type;
+};
+
+template <typename U>
+using type_of_list_t = typename type_of_list<U>::value_type;
+
+template <typename U>
+constexpr KFR_INTRINSIC shape<1> shape_of_list(const std::initializer_list<U>& list)
+{
+ return list.size();
+}
+
+template <typename U>
+constexpr KFR_INTRINSIC auto shape_of_list(const std::initializer_list<std::initializer_list<U>>& list)
+{
+ return shape_of_list(*list.begin());
+}
+
+template <typename U>
+constexpr KFR_INTRINSIC U list_get(const std::initializer_list<U>& list, const shape<1>& idx)
+{
+ return list[idx.front()];
+}
+
+template <typename U, index_t dims>
+constexpr KFR_INTRINSIC auto list_get(const std::initializer_list<std::initializer_list<U>>& list,
+ const shape<dims>& idx)
+{
+ return list_get(list[idx[0]], idx.template trim<dims - 1>());
+}
+
+template <typename U, typename T>
+KFR_FUNCTION T* list_copy_recursively(const std::initializer_list<U>& list, T* dest)
+{
+ for (const auto& value : list)
+ *dest++ = static_cast<T>(value);
+ return dest;
+}
+
+template <typename U, typename T>
+KFR_FUNCTION T* list_copy_recursively(const std::initializer_list<std::initializer_list<U>>& list, T* dest)
+{
+ for (const auto& sublist : list)
+ dest = list_copy_recursively(sublist, dest);
+ return dest;
+}
+
} // namespace internal_generic
template <index_t dims>
diff --git a/include/kfr/base/tensor.hpp b/include/kfr/base/tensor.hpp
@@ -118,9 +118,9 @@ public:
// prefix
KFR_MEM_INTRINSIC tensor_iterator& operator++()
{
- if (!internal_generic::increment_indices(indices, kfr::shape<dims>(0), src->m_shape))
+ if (!internal_generic::increment_indices(indices, shape_type(0), src->m_shape))
{
- indices = internal_generic::null_index;
+ indices = shape_type(internal_generic::null_index);
}
return *this;
}
@@ -188,18 +188,45 @@ public:
}
KFR_INTRINSIC tensor(const shape_type& shape, T value) : tensor(shape)
{
- std::fill(contiguous_begin(), contiguous_end(), value);
+ std::fill(contiguous_begin_unsafe(), contiguous_end_unsafe(), value);
}
KFR_INTRINSIC tensor(const shape_type& shape, const shape_type& strides, T value) : tensor(shape, strides)
{
std::fill(begin(), end(), value);
}
- KFR_INTRINSIC tensor(const shape_type& shape, std::initializer_list<T> values) : tensor(shape)
+ KFR_INTRINSIC tensor(const shape_type& shape, const std::initializer_list<T>& values) : tensor(shape)
{
if (values.size() != m_size)
throw std::runtime_error("Invalid initializer provided for kfr::tensor");
- std::copy(values.begin(), values.end(), contiguous_begin());
+ std::copy(values.begin(), values.end(), contiguous_begin_unsafe());
+ }
+
+ template <typename U, KFR_ENABLE_IF(std::is_convertible_v<U, T>&& dims == 1)>
+ KFR_INTRINSIC tensor(const std::initializer_list<U>& values) : tensor(shape_type{ values.size() })
+ {
+ internal_generic::list_copy_recursively(values, contiguous_begin_unsafe());
+ }
+ template <typename U, KFR_ENABLE_IF(std::is_convertible_v<U, T>&& dims == 2)>
+ KFR_INTRINSIC tensor(const std::initializer_list<std::initializer_list<U>>& values)
+ : tensor(shape_type{ values.size(), values.begin()->size() })
+ {
+ internal_generic::list_copy_recursively(values, contiguous_begin_unsafe());
+ }
+ template <typename U, KFR_ENABLE_IF(std::is_convertible_v<U, T>&& dims == 3)>
+ KFR_INTRINSIC tensor(const std::initializer_list<std::initializer_list<std::initializer_list<U>>>& values)
+ : tensor(shape_type{ values.size(), values.begin()->size(), values.begin()->begin()->size() })
+ {
+ internal_generic::list_copy_recursively(values, contiguous_begin_unsafe());
+ }
+ template <typename U, KFR_ENABLE_IF(std::is_convertible_v<U, T>&& dims == 4)>
+ KFR_INTRINSIC tensor(
+ const std::initializer_list<std::initializer_list<std::initializer_list<std::initializer_list<U>>>>&
+ values)
+ : tensor(shape_type{ values.size(), values.begin()->size(), values.begin()->begin()->size(),
+ values.begin()->begin()->begin()->size() })
+ {
+ internal_generic::list_copy_recursively(values, contiguous_begin_unsafe());
}
KFR_INTRINSIC tensor(const shape_type& shape, const shape_type& strides, std::initializer_list<T> values)
@@ -214,10 +241,18 @@ public:
KFR_INTRINSIC size_type size() const { return m_size; }
- KFR_INTRINSIC tensor_iterator begin() const { return tensor_iterator{ this, 0 }; }
+ KFR_INTRINSIC bool empty() const { return m_size == 0; }
+
+ KFR_INTRINSIC tensor_iterator begin() const
+ {
+ if (empty())
+ return tensor_iterator{ this, shape_type(internal_generic::null_index) };
+ else
+ return tensor_iterator{ this, shape_type(0) };
+ }
KFR_INTRINSIC tensor_iterator end() const
{
- return tensor_iterator{ this, internal_generic::null_index };
+ return tensor_iterator{ this, shape_type(internal_generic::null_index) };
}
KFR_INTRINSIC void require_contiguous() const
@@ -310,22 +345,97 @@ public:
template <typename... Index>
static constexpr bool has_tensor_range = (std::is_same_v<Index, tensor_range> || ...);
+ KFR_MEM_INTRINSIC static void get_range(index_t& start, index_t& shape, index_t& step,
+ signed_index_t tsize, index_t iidx)
+ {
+ signed_index_t tstart = iidx;
+ tstart = tstart < 0 ? tsize + tstart : tstart;
+ start = tstart;
+ shape = tstart < tsize ? 1 : 0;
+ step = 1;
+ }
+
+ KFR_MEM_INTRINSIC static void get_range(index_t& start, index_t& shape, index_t& step,
+ signed_index_t tsize, const tensor_range& iidx)
+ {
+ signed_index_t tstep = iidx.step.value_or(1);
+ signed_index_t tstart;
+ signed_index_t tstop;
+ if (tstep >= 0)
+ {
+ tstart = iidx.start.value_or(0);
+ tstop = iidx.stop.value_or(tsize);
+ }
+ else
+ {
+ tstart = iidx.start ? *iidx.start + 1 : tsize;
+ tstop = iidx.stop ? *iidx.stop + 1 : 0;
+ }
+ tstart = tstart < 0 ? tsize + tstart : tstart;
+ tstart = std::max(std::min(tstart, tsize), signed_index_t(0));
+ if (tstep == 0)
+ {
+ start = tstart;
+ shape = tstop - tstart;
+ step = 0;
+ }
+ else
+ {
+ tstop = tstop < 0 ? tsize + tstop : tstop;
+ tstop = std::max(std::min(tstop, tsize), signed_index_t(0));
+ if (tstep >= 0)
+ {
+ tstop = std::max(tstop, tstart);
+ start = tstart;
+ shape = (tstop - tstart + tstep - 1) / tstep;
+ step = tstep;
+ }
+ else
+ {
+ tstart = std::max(tstart, tstop);
+ shape = (tstart - tstop + -tstep - 1) / -tstep;
+ start = tstart - 1;
+ step = tstep;
+ }
+ }
+ }
+
+ template <index_t... Num, typename... Index>
+ KFR_MEM_INTRINSIC void get_ranges(shape_type& start, shape_type& shape, shape_type& step,
+ cvals_t<index_t, Num...> indices, const std::tuple<Index...>& idx) const
+ {
+ cforeach(indices,
+ [&](auto i_) CMT_INLINE_LAMBDA
+ {
+ constexpr index_t i = val_of(decltype(i_)());
+ signed_index_t tsize = static_cast<signed_index_t>(m_shape[i]);
+ if constexpr (i < sizeof...(Index))
+ {
+ get_range(start[i], shape[i], step[i], tsize, std::get<i>(idx));
+ }
+ else
+ {
+ start[i] = 0;
+ shape[i] = tsize;
+ step[i] = 1;
+ }
+ });
+ }
+
template <typename... Index,
size_t ndimOut = internal_generic::count_dimensions<Index...>() + (dims - sizeof...(Index)),
std::enable_if_t<has_tensor_range<Index...> || (sizeof...(Index) < dims)>* = nullptr>
KFR_MEM_INTRINSIC tensor<T, ndimOut> operator()(const Index&... idx) const
{
- shape_type start{ internal_generic::get_start(idx)... };
- shape_type stop{ internal_generic::get_stop(idx)... };
- stop = min(*stop, *m_shape);
- shape_type strides = m_strides;
- for (index_t i = sizeof...(Index); i < dims; ++i)
- {
- start[i] = 0;
- stop[i] = m_shape[i];
- }
- T* data = m_data + calc_index(start);
- shape_type shape = *stop - *start;
+ shape_type start;
+ shape_type shape;
+ shape_type step;
+ get_ranges(start, shape, step, cvalseq<index_t, dims>, std::make_tuple(idx...));
+ shape_type strides = *step * *m_strides;
+ // shape_type absstep = abs(*step);
+
+ T* data = m_data + calc_index(start);
+ // shape_type shape = ((*stop - *start) + (*absstep - 1)) / *absstep;
return tensor<T, ndimOut>{
data,
@@ -382,7 +492,7 @@ public:
KFR_MEM_INTRINSIC tensor<T, 1> flatten_may_copy(bool allow_copy = false) const
{
- return reshape(shape<1>{ m_size }, allow_copy);
+ return reshape_may_copy(kfr::shape<1>{ m_size }, allow_copy);
}
KFR_MEM_INTRINSIC tensor copy() const
@@ -686,6 +796,65 @@ public:
KFR_MEM_INTRINSIC bool is_last_contiguous() const { return m_strides.back() == 1; }
+ std::string to_string(std::string format = "%g", int max_columns = 16, int max_dimensions = INT_MAX,
+ std::string separator = ", ", std::string open = "{", std::string close = "}") const
+ {
+ if (max_columns == 0)
+ max_columns = INT_MAX;
+ std::stringstream ss;
+ for (index_t i = 0; i < dims; ++i)
+ ss << open;
+
+ if (!empty())
+ {
+ shape_type index{ 0 };
+ std::string open_filler(open.size(), ' ');
+ std::string separator_trimmed = separator.substr(0, 1 + separator.find_last_not_of(" \t"));
+ char buf[64];
+ int columns = 0;
+ do
+ {
+ int c = sprintf_s(buf, std::size(buf), format.c_str(), access(index));
+ index_t z = index.trailing_zeros();
+ if ((z > 0 && columns > 0) || columns >= max_columns)
+ {
+ for (index_t i = 0; i < z; ++i)
+ ss << close;
+
+ if (z > max_dimensions || columns >= max_columns)
+ {
+ if (columns > 0)
+ ss << separator_trimmed;
+ ss << std::endl;
+ for (index_t i = 0; i < dims - z; ++i)
+ ss << open_filler;
+ }
+ else
+ {
+ if (columns > 0)
+ ss << separator;
+ }
+ for (index_t i = 0; i < z; ++i)
+ ss << open;
+
+ columns = 0;
+ }
+ else
+ {
+ if (columns > 0)
+ ss << separator;
+ }
+ if (c < 1)
+ return "";
+ ss.write(buf, c);
+ ++columns;
+ } while (internal_generic::increment_indices<dims>(index, shape_type{ 0 }, m_shape));
+ }
+ for (index_t i = 0; i < dims; ++i)
+ ss << close;
+ return ss.str();
+ }
+
private:
template <typename Input>
KFR_MEM_INTRINSIC void assign_expr(Input&& input) const
@@ -734,7 +903,7 @@ struct expression_traits<tensor<T, Dims>> : expression_traits_defaults
{
return self.shape();
}
- KFR_MEM_INTRINSIC constexpr static shape<dims> shapeof() { return { 0 }; }
+ KFR_MEM_INTRINSIC constexpr static shape<dims> shapeof() { return shape<dims>{ 0 }; }
};
inline namespace CMT_ARCH_NAME
@@ -779,13 +948,21 @@ tensor<T, outdims> tapply(const tensor<T, dims1>& x, const tensor<T, dims2>& y,
return result;
}
+template <size_t width = 0, index_t Axis = infinite_size, typename E, typename Traits = expression_traits<E>>
+tensor<typename Traits::value_type, Traits::dims> trender(const E& expr)
+{
+ tensor<typename Traits::value_type, Traits::dims> result(Traits::shapeof(expr));
+ tprocess<width, Axis>(result, expr);
+ return result;
+}
+
} // namespace CMT_ARCH_NAME
} // namespace kfr
namespace cometa
{
-template <size_t dims>
+template <kfr::index_t dims>
struct representation<kfr::shape<dims>>
{
using type = std::string;
@@ -798,7 +975,7 @@ struct representation<kfr::shape<dims>>
else
{
std::string s;
- for (size_t i = 0; i < dims; ++i)
+ for (kfr::index_t i = 0; i < dims; ++i)
{
if (CMT_LIKELY(i > 0))
s += ", ";
@@ -808,6 +985,14 @@ struct representation<kfr::shape<dims>>
}
}
};
+
+template <typename T, kfr::index_t dims>
+struct representation<kfr::tensor<T, dims>>
+{
+ using type = std::string;
+ static std::string get(const kfr::tensor<T, dims>& value) { return value.to_string(); }
+};
+
} // namespace cometa
CMT_PRAGMA_MSVC(warning(pop))
diff --git a/tests/unit/base/tensor.cpp b/tests/unit/base/tensor.cpp
@@ -14,6 +14,7 @@ CMT_PRAGMA_MSVC(warning(disable : 5051))
namespace kfr
{
+
inline namespace CMT_ARCH_NAME
{
@@ -257,8 +258,8 @@ struct expression_traits<tcounter<T, Dims>> : expression_traits_defaults
using value_type = T;
constexpr static size_t dims = Dims;
- constexpr static shape<dims> shapeof(const tcounter<T, Dims>& self) { return max_index_t; }
- constexpr static shape<dims> shapeof() { return max_index_t; }
+ constexpr static shape<dims> shapeof(const tcounter<T, Dims>& self) { return shape<dims>(max_index_t); }
+ constexpr static shape<dims> shapeof() { return shape<dims>(max_index_t); }
};
template <typename T, size_t N1>
@@ -267,8 +268,8 @@ struct expression_traits<std::array<T, N1>> : expression_traits_defaults
using value_type = T;
constexpr static size_t dims = 1;
- constexpr static shape<1> shapeof(const std::array<T, N1>& self) { return { N1 }; }
- constexpr static shape<1> shapeof() { return { N1 }; }
+ constexpr static shape<1> shapeof(const std::array<T, N1>& self) { return shape<1>{ N1 }; }
+ constexpr static shape<1> shapeof() { return shape<1>{ N1 }; }
};
template <typename T, size_t N1, size_t N2>
@@ -277,8 +278,11 @@ struct expression_traits<std::array<std::array<T, N1>, N2>> : expression_traits_
using value_type = T;
constexpr static size_t dims = 2;
- constexpr static shape<2> shapeof(const std::array<std::array<T, N1>, N2>& self) { return { N2, N1 }; }
- constexpr static shape<2> shapeof() { return { N2, N1 }; }
+ constexpr static shape<2> shapeof(const std::array<std::array<T, N1>, N2>& self)
+ {
+ return shape<2>{ N2, N1 };
+ }
+ constexpr static shape<2> shapeof() { return shape<2>{ N2, N1 }; }
};
inline namespace CMT_ARCH_NAME
@@ -459,11 +463,155 @@ TEST(xfunction_test)
{ { 501.f, 502.f, 503.f, 504.f, 505.f } } } });
}
+template <typename Type, index_t Dims>
+KFR_FUNCTION tcounter<Type, Dims> debug_counter(uint64_t scale = 10)
+{
+ tcounter<Type, Dims> result;
+ result.start = 0;
+ uint64_t val = 1;
+ for (size_t i = 0; i < Dims; i++)
+ {
+ result.steps[Dims - 1 - i] = val;
+ val *= scale;
+ }
+ return result;
+}
+
+static std::string nl = R"(
+)";
+
+TEST(tensor_tostring)
+{
+ tensor<float, 1> t1(shape{ 60 });
+ t1 = debug_counter<float, 1>();
+ CHECK(nl + t1.to_string("%2.0f", 12, 0) + nl == R"(
+{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59}
+)");
+
+ tensor<float, 2> t2(shape{ 12, 5 });
+ t2 = debug_counter<float, 2>();
+ CHECK(nl + t2.to_string("%3.0f", 16, 0) + nl == R"(
+{{ 0, 1, 2, 3, 4},
+ { 10, 11, 12, 13, 14},
+ { 20, 21, 22, 23, 24},
+ { 30, 31, 32, 33, 34},
+ { 40, 41, 42, 43, 44},
+ { 50, 51, 52, 53, 54},
+ { 60, 61, 62, 63, 64},
+ { 70, 71, 72, 73, 74},
+ { 80, 81, 82, 83, 84},
+ { 90, 91, 92, 93, 94},
+ {100, 101, 102, 103, 104},
+ {110, 111, 112, 113, 114}}
+)");
+
+ tensor<float, 3> t3(shape{ 3, 4, 5 });
+ t3 = debug_counter<float, 3>();
+ CHECK(nl + t3.to_string("%4.0f", 16, 0) + nl == R"(
+{{{ 0, 1, 2, 3, 4},
+ { 10, 11, 12, 13, 14},
+ { 20, 21, 22, 23, 24},
+ { 30, 31, 32, 33, 34}},
+ {{ 100, 101, 102, 103, 104},
+ { 110, 111, 112, 113, 114},
+ { 120, 121, 122, 123, 124},
+ { 130, 131, 132, 133, 134}},
+ {{ 200, 201, 202, 203, 204},
+ { 210, 211, 212, 213, 214},
+ { 220, 221, 222, 223, 224},
+ { 230, 231, 232, 233, 234}}}
+)");
+
+ tensor<float, 4> t4(shape{ 3, 2, 2, 5 });
+ t4 = debug_counter<float, 4>();
+ CHECK(nl + t4.to_string("%5.0f", 16, 0) + nl == R"(
+{{{{ 0, 1, 2, 3, 4},
+ { 10, 11, 12, 13, 14}},
+ {{ 100, 101, 102, 103, 104},
+ { 110, 111, 112, 113, 114}}},
+ {{{ 1000, 1001, 1002, 1003, 1004},
+ { 1010, 1011, 1012, 1013, 1014}},
+ {{ 1100, 1101, 1102, 1103, 1104},
+ { 1110, 1111, 1112, 1113, 1114}}},
+ {{{ 2000, 2001, 2002, 2003, 2004},
+ { 2010, 2011, 2012, 2013, 2014}},
+ {{ 2100, 2101, 2102, 2103, 2104},
+ { 2110, 2111, 2112, 2113, 2114}}}}
+)");
+
+ tensor<float, 2> t5(shape{ 10, 1 });
+ t5 = debug_counter<float, 2>();
+ CHECK(nl + t5.to_string("%.0f", 12, 1) + nl == R"(
+{{0}, {10}, {20}, {30}, {40}, {50}, {60}, {70}, {80}, {90}}
+)");
+}
+
+template <typename T, index_t dims1, index_t dims2>
+static void test_reshape_body(const tensor<T, dims1>& t1, const tensor<T, dims2>& t2)
+{
+ CHECK(t1.reshape_may_copy(t2.shape(), true) == t2);
+
+ cforeach(csizeseq<dims2>,
+ [&](auto x)
+ {
+ constexpr index_t axis = val_of(decltype(x)());
+ ::testo::scope s(
+ as_string("axis = ", axis, " shape = (", t1.shape(), ") -> (", t2.shape(), ")"));
+ CHECK(trender<1, axis>(x_reshape(t1, t2.shape())) == t2);
+ CHECK(trender<2, axis>(x_reshape(t1, t2.shape())) == t2);
+ CHECK(trender<4, axis>(x_reshape(t1, t2.shape())) == t2);
+ CHECK(trender<8, axis>(x_reshape(t1, t2.shape())) == t2);
+ });
+}
+
+static void test_reshape() {}
+
+template <typename T, index_t dims1, index_t... dims>
+static void test_reshape(const tensor<T, dims1>& t1, const tensor<T, dims>&... ts)
+{
+ cforeach(std::make_tuple((&ts)...),
+ [&](auto t2)
+ {
+ test_reshape_body(t1, *t2);
+ test_reshape_body(*t2, t1);
+ });
+
+ test_reshape(ts...);
+}
+
TEST(xreshape)
{
std::array<float, 12> x;
tprocess(x_reshape(x, shape{ 3, 4 }), tcounter<float, 2>{ 0, { 10, 1 } });
CHECK(x == std::array<float, 12>{ { 0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23 } });
+
+ test_reshape(tensor<float, 1>{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }, //
+ tensor<float, 2>{ { 0, 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 10, 11 } },
+ tensor<float, 2>{ { 0, 1, 2, 3 }, { 4, 5, 6, 7 }, { 8, 9, 10, 11 } },
+ tensor<float, 2>{ { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, { 9, 10, 11 } },
+ tensor<float, 2>{ { 0, 1 }, { 2, 3 }, { 4, 5 }, { 6, 7 }, { 8, 9 }, { 10, 11 } },
+ tensor<float, 2>{
+ { 0 }, { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 } });
+
+ test_reshape(tensor<float, 1>{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }, //
+ tensor<float, 3>{ { { 0, 1 }, { 2, 3 }, { 4, 5 } }, { { 6, 7 }, { 8, 9 }, { 10, 11 } } },
+ tensor<float, 4>{ { { { 0 }, { 1 } }, { { 2 }, { 3 } }, { { 4 }, { 5 } } },
+ { { { 6 }, { 7 } }, { { 8 }, { 9 } }, { { 10 }, { 11 } } } });
+
+ test_reshape(
+ tensor<float, 1>{
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }, //
+ tensor<float, 3>{ { { 0, 1 }, { 2, 3 }, { 4, 5 } },
+ { { 6, 7 }, { 8, 9 }, { 10, 11 } },
+ { { 12, 13 }, { 14, 15 }, { 16, 17 } },
+ { { 18, 19 }, { 20, 21 }, { 22, 23 } } },
+ tensor<float, 4>{
+ { { { 0, 1 }, { 2, 3 } }, { { 4, 5 }, { 6, 7 } }, { { 8, 9 }, { 10, 11 } } },
+ { { { 12, 13 }, { 14, 15 } }, { { 16, 17 }, { 18, 19 } }, { { 20, 21 }, { 22, 23 } } } });
}
} // namespace CMT_ARCH_NAME
@@ -534,21 +682,11 @@ extern "C" __declspec(dllexport) void assembly_test12(
const xfunction<std::plus<>, std::array<std::array<uint32_t, 1>, 4>&,
std::array<std::array<uint32_t, 4>, 1>&>& y)
{
- // [[maybe_unused]] constexpr auto sh1 = expression_traits<decltype(x)>::shapeof();
- // [[maybe_unused]] constexpr auto sh2 = expression_traits<decltype(y)>::shapeof();
-
- // static_assert(sh1 == shape{ 4, 4 });
- // static_assert(sh2 == shape{ 4, 4 });
tprocess(x, y);
}
extern "C" __declspec(dllexport) void assembly_test13(const tensor<float, 1>& x, const tensor<float, 1>& y)
{
- // [[maybe_unused]] constexpr auto sh1 = expression_traits<decltype(x)>::shapeof();
- // [[maybe_unused]] constexpr auto sh2 = expression_traits<decltype(y)>::shapeof();
-
- // static_assert(sh1 == shape{ 4, 4 });
- // static_assert(sh2 == shape{ 4, 4 });
tprocess(x, y * 0.5f);
}
@@ -653,6 +791,58 @@ TEST(xwitharguments)
static_assert(std::is_same_v<decltype(fn3)::nth<0>, const val&>);
}
+TEST(slices)
+{
+ const auto _ = std::nullopt;
+ tensor<float, 1> t1{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
+ CHECK(t1(tstart(3)) == tensor<float, 1>{ 3, 4, 5, 6, 7, 8, 9 });
+ CHECK(t1(tstop(3)) == tensor<float, 1>{ 0, 1, 2 });
+ CHECK(t1(trange(3, 7)) == tensor<float, 1>{ 3, 4, 5, 6 });
+
+ CHECK(t1(tstart(10)) == tensor<float, 1>{});
+ CHECK(t1(tstop(0)) == tensor<float, 1>{});
+ CHECK(t1(trange(7, 3)) == tensor<float, 1>{});
+
+ CHECK(t1(tstart(-2)) == tensor<float, 1>{ 8, 9 });
+ CHECK(t1(trange(-7, -4)) == tensor<float, 1>{ 3, 4, 5 });
+ CHECK(t1(tall()) == tensor<float, 1>{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 });
+
+ CHECK(t1(trange(3, _)) == tensor<float, 1>{ 3, 4, 5, 6, 7, 8, 9 });
+ CHECK(t1(trange(_, 7)) == tensor<float, 1>{ 0, 1, 2, 3, 4, 5, 6 });
+
+ CHECK(t1(trange(_, _, 2)) == tensor<float, 1>{ 0, 2, 4, 6, 8 });
+ CHECK(t1(trange(_, _, 5)) == tensor<float, 1>{ 0, 5 });
+ CHECK(t1(trange(_, _, 12)) == tensor<float, 1>{ 0 });
+ CHECK(t1(trange(1, _, 2)) == tensor<float, 1>{ 1, 3, 5, 7, 9 });
+ CHECK(t1(trange(1, _, 5)) == tensor<float, 1>{ 1, 6 });
+ CHECK(t1(trange(1, _, 12)) == tensor<float, 1>{ 1 });
+
+ CHECK(t1(tstep(2))(tstep(2)) == tensor<float, 1>{ 0, 4, 8 });
+ CHECK(t1(tstep(2))(tstep(2))(tstep(2)) == tensor<float, 1>{ 0, 8 });
+ CHECK(t1(tstep(2))(tstep(3)) == tensor<float, 1>{ 0, 6 });
+
+ CHECK(t1(trange(_, _, -1)) == tensor<float, 1>{ 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 });
+ CHECK(t1(trange(5, _, -1)) == tensor<float, 1>{ 5, 4, 3, 2, 1, 0 });
+ CHECK(t1(trange(1, 0, -1)) == tensor<float, 1>{ 1 });
+
+ CHECK(t1(trange(3, 3 + 12, 0)) == tensor<float, 1>{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 });
+}
+
+TEST(from_ilist)
+{
+ tensor<float, 1> t1{ 10, 20, 30, 40 };
+ CHECK(t1 == tensor<float, 1>(shape{ 4 }, { 10, 20, 30, 40 }));
+
+ tensor<float, 2> t2{ { 10, 20 }, { 30, 40 } };
+ CHECK(t2 == tensor<float, 2>(shape{ 2, 2 }, { 10, 20, 30, 40 }));
+
+ tensor<float, 2> t3{ { 10, 20 } };
+ CHECK(t3 == tensor<float, 2>(shape{ 1, 2 }, { 10, 20 }));
+
+ tensor<float, 3> t4{ { { 10, 20 }, { 30, 40 } }, { { 50, 60 }, { 70, 80 } } };
+ CHECK(t4 == tensor<float, 3>(shape{ 2, 2, 2 }, { 10, 20, 30, 40, 50, 60, 70, 80 }));
+}
+
TEST(enumerate)
{
CHECK(enumerate(vec_shape<int, 4>{}, 4) == vec{ 0, 4, 8, 12 });