commit f18857532d59b2953c45c3d4fa46f437479b176e
parent 8a15c6c56e6b2a845acf569486e45a75813c97dc
Author: [email protected] <[email protected]>
Date: Sat, 12 Nov 2022 22:34:12 +0000
Documentation: expressions
Diffstat:
1 file changed, 160 insertions(+), 7 deletions(-)
diff --git a/docs/docs/expressions.md b/docs/docs/expressions.md
@@ -1,8 +1,44 @@
# Expressions
-Calling functions on arrays of data is performed lazily using C++ template expressions.
+In KFR, all data is represented through _Expression_ concept.
+Expression is a virtual multidimensional array consisting of elements that can be read (Input expression) or written to (Output expression).
+Expression can have specific size or have infinite size in any dimension. Its size may be known at compile time or at runtime only.
+
+The number of dimensions must be known at compile time.
+
+Normally, expressions do not own any data and can be seen as _data generators_ with arbitrary algorithm. But classes owning data (`tensor` and `univector`) provide expression interface as well. Since KFR5 you can make expression from any user defined or `std` type.
+
+Expressions can refer to other expressions as its arguments.
+prvalue expressions are captured by value and moved to expression storage.
+lvalue expressions are captured by reference.
+The latter may cause dangling references if resulting expression is used outside of its arguments scope. As always, `std::move` forces variable to be captured by value.
+
+The following function creates Expression that represents a virtual 3-dimensional array with elements starting from 0 at $(0,0,0)$ index
+and incremented by $1$, $10$ and $100$ along each axis.
+```
+counter(0, 1, 10, 100)
+```
+
+To get a single element from Expression, call `get_element` function. It takes the expression itself and the index.
+```
+get_element(counter(0, 1, 10, 100), {1, 2, 3}) == 321
+```
+
+Calling functions or operators on expressions or arrays of data is performed lazily in KFR.
This allows better optimization and does not require saving temporary data.
+Internally a C++ technique called [Expression templates](https://en.wikipedia.org/wiki/Expression_templates) is used but expressions processing is explicitly vectorized in KFR. You can control some aspects of vectorization.
+
+## univector - 1D data with compatibility with std::array or std::vector
+
+`univector<T, tag>` contains 1D data.
+
+## tensor - multidimensional data
+
+`tensor<T, dims>` contains multidimensional data.
+
+## Functions and operators
+
For example, subtracting one univector from another gives expression type, not univector:
```c++
@@ -26,7 +62,7 @@ univector<int, 5> z = x - y;
when an expression is assigned to a `univector` variable, expression is evaluated
and values are being written to the variable.
-Same applies to calling KFR functions on univectors, this doesn't calculate value immediately. Instead, new expression will be created.
+Same applies to calling KFR functions on univectors, this doesn't calculate values immediately. Instead, new expression will be created.
```c++
univector<float, 5> x{1, 2, 3, 4, 5};
@@ -34,9 +70,127 @@ sqrt(x); // only constructs an expression
univector<float, 5> values = sqrt(x); // constructs an expression and writes data to univector
```
-Input expressions can be read from and output expressions can be written to. Class can be an input and output expression at same time. `univector` is an example of such class.
+Element type of an input expressions can be determined by using `expression_value_type<Expr>` (In KFR4 it was `value_type_of<Expr>`). Since KFR5 all expressions have their type specified.
+
+### Writing custom expressions
+
+To turn a user-defined class into expression, you should define
+`kfr::expression_traits<Class>` and provide typedefs and function to work with it.
+
+Input expressions must implement `get_elements` function to retrieve elements at given index.
+
+Output expressions must implement `set_elements` function to set its elements.
+
+Example of input expression:
+
+```c++
+#include <kfr/all.hpp>
+
+namespace kfr
+{
+
+template <typename T, index_t Size>
+struct identity_matrix
+{
+};
-Data type of an input expressions can be determined by using `value_type_of<Expression>`. However, not all expressions have their types specified.
-In such cases `value_type_of` will return special type `generic`.
+template <typename T, index_t Size>
+struct expression_traits<identity_matrix<T, Size>> : expression_traits_defaults
+{
+ // element type for expression
+ using value_type = T;
-Size (length) of an expression also can be specified or not. `counter` is an example of generic (untyped) expression without the size.
-\ No newline at end of file
+ // number of dimensions, must be known at compile time
+ constexpr static size_t dims = 2;
+
+ // function to retrieve shape (size) of matrix, runtime version
+ constexpr static shape<2> shapeof(const identity_matrix<T, Size>& self) { return { Size, Size }; }
+
+ // function to retrieve shape (size) of matrix, compile time version
+ // if the size is unknown at compile time the function must be still defined
+ // but return undefined_size for every axis with unknown size
+ constexpr static shape<2> shapeof() { return { Size, Size }; }
+};
+
+template <typename T, index_t Size, index_t Axis, size_t N>
+vec<T, N> get_elements(const identity_matrix<T, Size>& self, const shape<2>& index,
+ const axis_params<Axis, N>& sh)
+{
+ // identity matrix expression returns 1 if col==row, 0 otherwise
+ // indices<A> returns indices for given axis taking vectorization into account
+ // select is a SIMD-enabled ternary operator function
+ return select(indices<0>(index, sh) == indices<1>(index, sh), 1, 0);
+}
+
+}
+
+int main()
+{
+ using namespace kfr;
+ // Create identity_matrix expression with 9 cols/rows,
+ // Render it to tensor class (trender)
+ // Convert to string with maximum 16 columns of values
+ // And 0 dimensions collapsed (to_string).
+ println(trender(identity_matrix<float, 9>{}).to_string(16, 0));
+}
+
+```
+**Output**:
+```
+{{1, 0, 0, 0, 0, 0, 0, 0, 0},
+ {0, 1, 0, 0, 0, 0, 0, 0, 0},
+ {0, 0, 1, 0, 0, 0, 0, 0, 0},
+ {0, 0, 0, 1, 0, 0, 0, 0, 0},
+ {0, 0, 0, 0, 1, 0, 0, 0, 0},
+ {0, 0, 0, 0, 0, 1, 0, 0, 0},
+ {0, 0, 0, 0, 0, 0, 1, 0, 0},
+ {0, 0, 0, 0, 0, 0, 0, 1, 0},
+ {0, 0, 0, 0, 0, 0, 0, 0, 1}}
+```
+
+Expression may be defined in a compact form using only a single class:
+
+```c++
+template <typename T, index_t Size>
+struct identity_matrix : expression_traits_defaults
+{
+ using value_type = T;
+
+ constexpr static size_t dims = 2;
+ constexpr static shape<2> shapeof(const identity_matrix& self) { return { Size, Size }; }
+ constexpr static shape<2> shapeof() { return { Size, Size }; }
+
+ template <index_t Axis, size_t N>
+ friend vec<T, N> get_elements(const identity_matrix& self, const shape<2>& index,
+ const axis_params<Axis, N>& sh)
+ {
+ return select(indices<0>(index, sh) == indices<1>(index, sh), 1, 0);
+ }
+};
+
+```
+
+Now with size defined at runtime.
+
+```c++
+template <typename T>
+struct identity_matrix : expression_traits_defaults
+{
+ using value_type = T;
+
+ constexpr static size_t dims = 2;
+ constexpr static shape<2> shapeof(const identity_matrix& self) { return { self.size, self.size }; }
+ // undefined_size means size is not known at compile time
+ constexpr static shape<2> shapeof() { return { undefined_size, undefined_size }; }
+
+ template <index_t Axis, size_t N>
+ friend vec<T, N> get_elements(const identity_matrix& self, const shape<2>& index,
+ const axis_params<Axis, N>& sh)
+ {
+ return select(indices<0>(index, sh) == indices<1>(index, sh), 1, 0);
+ }
+
+ index_t size;
+};
+
+```