NeuralPi

Raspberry Pi guitar pedal using neural networks to emulate real amps and effects
Log | Files | Refs | Submodules | README

commit f86bb93e253d2fc5788c1e96cbcff95e16b4f0f1
parent 4c789d9e136fe426cd6842b933922bf287a5cd53
Author: mtseng15 <[email protected]>
Date:   Wed, 10 Nov 2021 04:31:39 -0800

Added support for 2 parameter models

Diffstat:
MSource/PluginEditor.cpp | 20++++++++++++++------
MSource/PluginEditor.h | 2+-
MSource/PluginProcessor.cpp | 37+++++++++++++++++++++----------------
MSource/PluginProcessor.h | 5++++-
MSource/RTNeuralLSTM.cpp | 25+++++++++++++++++++------
MSource/RTNeuralLSTM.h | 9++++++++-
6 files changed, 67 insertions(+), 31 deletions(-)

diff --git a/Source/PluginEditor.cpp b/Source/PluginEditor.cpp @@ -573,7 +573,7 @@ NeuralPiAudioProcessorEditor::NeuralPiAudioProcessorEditor (NeuralPiAudioProcess setSize(345, 455); // Set gain knob color based on conditioned/snapshot model - setGainKnobColor(); + setParamKnobColor(); } NeuralPiAudioProcessorEditor::~NeuralPiAudioProcessorEditor() @@ -657,7 +657,7 @@ void NeuralPiAudioProcessorEditor::modelSelectChanged() } auto newValue = static_cast<float>(processor.current_model_index / (processor.num_models - 1.0)); modelKnob.setValue(newValue); - setGainKnobColor(); + setParamKnobColor(); } void NeuralPiAudioProcessorEditor::irSelectChanged() @@ -714,7 +714,7 @@ void NeuralPiAudioProcessorEditor::loadButtonClicked() } } } - setGainKnobColor(); + setParamKnobColor(); } void NeuralPiAudioProcessorEditor::loadIRClicked() @@ -1085,12 +1085,20 @@ void NeuralPiAudioProcessorEditor::setParameterValue(const String& paramId, floa } -void NeuralPiAudioProcessorEditor::setGainKnobColor() +void NeuralPiAudioProcessorEditor::setParamKnobColor() { - if (processor.is_conditioned == false) { + // If the knob is used for a parameter, change it to red + if (processor.params == 0) { ampGainKnob.setLookAndFeel(&blueLookAndFeel); + ampMasterKnob.setLookAndFeel(&blueLookAndFeel); } - else { + else if (processor.params == 1) { ampGainKnob.setLookAndFeel(&redLookAndFeel); + ampMasterKnob.setLookAndFeel(&blueLookAndFeel); } + else if (processor.params == 2) { + ampGainKnob.setLookAndFeel(&redLookAndFeel); + ampMasterKnob.setLookAndFeel(&redLookAndFeel); + } + } \ No newline at end of file diff --git a/Source/PluginEditor.h b/Source/PluginEditor.h @@ -175,7 +175,7 @@ private: float getParameterValue(const String& paramId); void setParameterValue(const String& paramId, float value); - void setGainKnobColor(); + void setParamKnobColor(); JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (NeuralPiAudioProcessorEditor) }; diff --git a/Source/PluginProcessor.cpp b/Source/PluginProcessor.cpp @@ -223,9 +223,13 @@ void NeuralPiAudioProcessor::processBlock (AudioBuffer<float>& buffer, MidiBuffe // Process LSTM based on input_size (snapshot model or conditioned model) if (LSTM.input_size == 1) { LSTM.process(buffer.getReadPointer(0), buffer.getWritePointer(0), numSamples); - } else { + } + else if (LSTM.input_size == 2) { LSTM.process(buffer.getReadPointer(0), gain, buffer.getWritePointer(0), numSamples); } + else if (LSTM.input_size == 3) { + LSTM.process(buffer.getReadPointer(0), gain, master, buffer.getWritePointer(0), numSamples); + } } // Process IR @@ -243,7 +247,9 @@ void NeuralPiAudioProcessor::processBlock (AudioBuffer<float>& buffer, MidiBuffe } // Master Volume - buffer.applyGain(master * 2.0); // Adding volume range (2x) mainly for clean models + if (LSTM.input_size == 1 || LSTM.input_size == 2) { + buffer.applyGain(master * 2.0); // Adding volume range (2x) mainly for clean models + } // Process Delay, and Reverb set_delayParams(delay); @@ -334,22 +340,21 @@ void NeuralPiAudioProcessor::loadConfig(File configFile) char_filename = path.toUTF8(); try { - // Check input size for conditioned models - // read JSON file - std::ifstream i2(char_filename); - nlohmann::json weights_json; - i2 >> weights_json; - - int input_size_json = weights_json["/model_data/input_size"_json_pointer]; - LSTM.input_size = input_size_json; - if (input_size_json == 1) { - is_conditioned = false; - LSTM.load_json(char_filename); + // Load the JSON file into the correct model + LSTM.load_json(char_filename); + + // Check what the input size is and then update the GUI appropirately + if (LSTM.input_size == 1) { + params = 0; + } + else if (LSTM.input_size == 2) { + params = 1; } - else { - is_conditioned = true; - LSTM.load_json2(char_filename); + else if (LSTM.input_size == 3) { + params = 2; } + + // If we are good: let's say so model_loaded = 1; } catch (const std::exception& e) { diff --git a/Source/PluginProcessor.h b/Source/PluginProcessor.h @@ -130,7 +130,10 @@ public: int current_ir_index = 0; int ir_index = 0; - bool is_conditioned = false; + // The number of parameters for the model + // 0 is for a snap shot model + // The PluginEditor uses this to determin which knobs to color red + int params = 0; RT_LSTM LSTM; diff --git a/Source/RTNeuralLSTM.cpp b/Source/RTNeuralLSTM.cpp @@ -63,10 +63,12 @@ void RT_LSTM::load_json(const char* filename) if (input_size == 1) { set_weights(&model, filename); } - else { + else if (input_size == 2) { set_weights(&model_cond1, filename); - } - + } + else if (input_size == 3) { + set_weights(&model_cond2, filename); + } } @@ -88,8 +90,19 @@ void RT_LSTM::process(const float* inData, float* outData, int numSamples) void RT_LSTM::process(const float* inData, float param, float* outData, int numSamples) { for (int i = 0; i < numSamples; ++i) { - inArray[0] = inData[i]; - inArray[1] = param; - outData[i] = model_cond1.forward(inArray) + inData[i]; + inArray1[0] = inData[i]; + inArray1[1] = param; + outData[i] = model_cond1.forward(inArray1) + inData[i]; + } +} + +void RT_LSTM::process(const float* inData, float param1, float param2, float* outData, int numSamples) +{ + for (int i = 0; i < numSamples; ++i) { + inArray2[0] = inData[i]; + inArray2[1] = param1; + inArray2[2] = param2; + outData[i] = model_cond2.forward(inArray2) + inData[i]; } } + diff --git a/Source/RTNeuralLSTM.h b/Source/RTNeuralLSTM.h @@ -15,6 +15,7 @@ public: void process(const float* inData, float* outData, int numSamples); void process(const float* inData, float param, float* outData, int numSamples); + void process(const float* inData, float param1, float param2, float* outData, int numSamples); int input_size = 1; @@ -27,5 +28,11 @@ private: RTNeural::LSTMLayerT<float, 2, 20>, RTNeural::DenseT<float, 20, 1>> model_cond1; - float inArray[2] = { 0.0, 0.0 }; + RTNeural::ModelT<float, 3, 1, + RTNeural::LSTMLayerT<float, 3, 20>, + RTNeural::DenseT<float, 20, 1>> model_cond2; + + // Pre-Allowcate arrays for feeding the models + float inArray1[2] = { 0.0, 0.0 }; + float inArray2[3] = { 0.0, 0.0, 0.0 }; };