AnalogTapeModel

Physical modelling signal processing for analog tape recording
Log | Files | Refs | Submodules | README | LICENSE

commit a865d64efc21feb848bb536acd89818a927f2050
parent eb958a89f1de0272f627a493899ad72f4e0b5ce0
Author: jatinchowdhury18 <[email protected]>
Date:   Sun, 16 May 2021 11:14:52 -0700

Use RTNeural static model for STN (#196)

* Use RTNeural static model for STN

* {Apply clang-format}

* Try to fix compilation issues on ARM

* Add <Accelerate> include

* Change aligned allocation flags on ARM Mac

* Update RTNeural submodule

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Diffstat:
M.github/workflows/cmake.yml | 1+
MPlugin/Source/Headless/UnitTests/STNTest.cpp | 25++++++++++++++++++++++---
MPlugin/Source/Processors/Hysteresis/HysteresisProcessing.cpp | 2+-
MPlugin/Source/Processors/Hysteresis/STNModel.cpp | 4+++-
MPlugin/Source/Processors/Hysteresis/STNModel.h | 39+++++++++++++++++++++++++++++++++++----
MPlugin/modules/CMakeLists.txt | 7++-----
MPlugin/modules/cmake/WarningFlags.cmake | 2++
7 files changed, 66 insertions(+), 14 deletions(-)

diff --git a/.github/workflows/cmake.yml b/.github/workflows/cmake.yml @@ -56,6 +56,7 @@ jobs: run: cmake --build build --config Release --parallel 4 - name: Unit Tests + shell: bash working-directory: ${{github.workspace}}/Plugin run: build/ChowTapeModel --unit-tests --all diff --git a/Plugin/Source/Headless/UnitTests/STNTest.cpp b/Plugin/Source/Headless/UnitTests/STNTest.cpp @@ -6,7 +6,7 @@ constexpr double sampleRate = 48000.0; constexpr double trainingSampleRate = 96000.0; constexpr auto sampleRateCorr = trainingSampleRate / sampleRate; -alignas (16) double input[] = { 1.0, 1.0, 1.0, 1.0, 1.0 }; +double input alignas (16)[5] = { 1.0, 1.0, 1.0, 1.0, 1.0 }; } // namespace STNTestUtils class STNTest : public UnitTest @@ -25,7 +25,7 @@ public: accTest(); beginTest ("STN Performance Test"); - // perfTest(); // Keep this disabled most of the time for CI + perfTest(); // Keep this disabled most of the time for CI } void accTest() @@ -55,7 +55,7 @@ public: stn.setParams (0.5f, 0.5f); auto refModel = loadModel(); - constexpr int nIter = 5000000; + constexpr int nIter = 400000; double result = 0.0; // ref timing @@ -71,6 +71,25 @@ public: std::cout << "Reference output: " << result << std::endl; std::cout << "Reference duration: " << durationRef << std::endl; + // static STN timing + auto durationStatic = durationRef; + { + auto jsonStream = std::make_unique<MemoryInputStream> (BinaryData::hyst_width_50_json, BinaryData::hyst_width_50_jsonSize, false); + auto modelsJson = nlohmann::json::parse (jsonStream->readEntireStreamAsString().toStdString()); + auto thisModelJson = modelsJson["drive_50_50"]; + RTNeural::ModelT<double, 5, 1, RTNeural::DenseT<double, 5, 4>, RTNeural::TanhActivationT<double, 4>, RTNeural::DenseT<double, 4, 4>, RTNeural::TanhActivationT<double, 4>, RTNeural::DenseT<double, 4, 1>> staticModel; + staticModel.parseJson (thisModelJson); + + Time time; + auto start = time.getMillisecondCounterHiRes(); + for (int i = 0; i < nIter; ++i) + result = staticModel.forward (input) * sampleRateCorr; + auto end = time.getMillisecondCounterHiRes(); + durationStatic = (end - start) / 1000.0; + } + std::cout << "Static output: " << result << std::endl; + std::cout << "Static duration: " << durationStatic << std::endl; + // plugin timing auto durationReal = durationRef; { diff --git a/Plugin/Source/Processors/Hysteresis/HysteresisProcessing.cpp b/Plugin/Source/Processors/Hysteresis/HysteresisProcessing.cpp @@ -210,7 +210,7 @@ inline double HysteresisProcessing::NR (double H, double H_d) noexcept inline double HysteresisProcessing::STN (double H, double H_d) noexcept { - alignas (16) double input[] = { H, H_d, H_n1, H_d_n1, M_n1 }; + double input alignas (16)[5] = { H, H_d, H_n1, H_d_n1, M_n1 }; // scale derivatives input[1] *= HysteresisSTN::diffMakeup; diff --git a/Plugin/Source/Processors/Hysteresis/STNModel.cpp b/Plugin/Source/Processors/Hysteresis/STNModel.cpp @@ -74,7 +74,9 @@ void Dense41::setBias (std::vector<double>& b) //=========================================================== void STNModel::loadModel (const nlohmann::json& modelJ) { -#if JUCE_LINUX +#if USE_RTNEURAL_STATIC + model.parseJson (modelJ); +#elif USE_RTNEURAL_POLY model = RTNeural::json_parser::parseJson<double> (modelJ); #else auto layers = modelJ["layers"]; diff --git a/Plugin/Source/Processors/Hysteresis/STNModel.h b/Plugin/Source/Processors/Hysteresis/STNModel.h @@ -3,6 +3,18 @@ #include <JuceHeader.h> #include <RTNeural/RTNeural.h> +// include <Accelerate> on Apple devices so we can use vvtanh +#if JUCE_MAC || JUCE_IOS +#define Point CarbonDummyPointName +#define Component CarbonDummyCompName +#include <Accelerate/Accelerate.h> +#undef Point +#undef Component +#endif + +#define USE_RTNEURAL_POLY 0 +#define USE_RTNEURAL_STATIC 1 + namespace STNSpace { using v_type = dsp::SIMDRegister<double>; @@ -125,7 +137,7 @@ public: inline void forward (const v_type* input) noexcept { -#if USE_ACCELERATE +#if defined(_M_ARM64) || defined(__arm64__) || defined(__aarch64__) alignas (16) double x[4]; input[0].copyToRawArray (x); input[1].copyToRawArray (&x[2]); @@ -153,14 +165,31 @@ private: static constexpr int size = 4; }; +static bool printed = false; + class STNModel { public: - STNModel() = default; + STNModel() + { + if (! printed) + { +#if USE_RTNEURAL_STATIC + std::cout << "Using RTNeural ModelT STN" << std::endl; +#elif USE_RTNEURAL_POLY + std::cout << "Using RTNeural polymorphic STN" << std::endl; +#else + std::cout << "Using hand-coded STN" << std::endl; +#endif + printed = true; + } + } inline double forward (const double* input) noexcept { -#if JUCE_LINUX +#if USE_RTNEURAL_STATIC + return model.forward (input); +#elif USE_RTNEURAL_POLY return model->forward (input); #else dense54.forward (input); @@ -174,7 +203,9 @@ public: void loadModel (const nlohmann::json& modelJ); private: -#if JUCE_LINUX +#if USE_RTNEURAL_STATIC + RTNeural::ModelT<double, 5, 1, RTNeural::DenseT<double, 5, 4>, RTNeural::TanhActivationT<double, 4>, RTNeural::DenseT<double, 4, 4>, RTNeural::TanhActivationT<double, 4>, RTNeural::DenseT<double, 4, 1>> model; +#elif USE_RTNEURAL_POLY std::unique_ptr<RTNeural::Model<double>> model; #else Dense54 dense54; diff --git a/Plugin/modules/CMakeLists.txt b/Plugin/modules/CMakeLists.txt @@ -6,12 +6,9 @@ message(STATUS "VERSION for JUCE: ${juce_version}") juce_add_modules(foleys_gui_magic) juce_add_modules(chowdsp_utils) -# Using RTNeural with XSimd or Accelerate backend -if(APPLE) -set(RTNEURAL_ACCELERATE ON CACHE BOOL "Use RTNeural with Accelerate backend" FORCE) -else() +# Using RTNeural with XSimd backend set(RTNEURAL_XSIMD ON CACHE BOOL "Use RTNeural with XSimd backend" FORCE) -endif() +add_definitions(-DUSE_XSIMD=1) add_subdirectory(RTNeural) include(cmake/WarningFlags.cmake) diff --git a/Plugin/modules/cmake/WarningFlags.cmake b/Plugin/modules/cmake/WarningFlags.cmake @@ -26,6 +26,8 @@ elseif((CMAKE_CXX_COMPILER_ID STREQUAL "Clang") OR (CMAKE_CXX_COMPILER_ID STREQU # For XSIMD -Wno-cast-align -Wno-shadow -Wno-implicit-int-conversion -Wno-zero-as-null-pointer-constant + # For aligned allocation on ARM + -faligned-allocation ) elseif(CMAKE_CXX_COMPILER_ID STREQUAL "GNU") target_compile_options(warning_flags INTERFACE