AnalogTapeModel

Physical modelling signal processing for analog tape recording
Log | Files | Refs | Submodules | README | LICENSE

commit 54f4f0161af99a7e057e6385981e5010b4da58c2
parent 466fd9b5e85c1daae1be12b34431d4dc56e1d816
Author: jatinchowdhury18 <[email protected]>
Date:   Wed,  6 Feb 2019 23:10:41 -0800

Fix Hysteresis Simulation

Diffstat:
MPaper/420_paper.pdf | 0
MPaper/420_paper.tex | 89+++++++++++++++++++++++++++++++++++++++++++++----------------------------------
MPaper/references.bib | 13+++++++++++++
ASimulations/Sim2-M_H.png | 0
MSimulations/hystersis.py | 91++++++++++++++++++++++++++++++-------------------------------------------------
5 files changed, 98 insertions(+), 95 deletions(-)

diff --git a/Paper/420_paper.pdf b/Paper/420_paper.pdf Binary files differ. diff --git a/Paper/420_paper.tex b/Paper/420_paper.tex @@ -119,7 +119,7 @@ To quote Brian Eno, "Whatever you now find weird, ugly, uncomfortable, and nasty about a new medium will surely become its signature. CD distortion, the jitteriness of digital video, the crap sound of 8-bit - all of these will be cherished and emulated as soon as they can be avoided." \cite{Eno}. The following describes -a physical model of an analog tape machine, starting from basic physical +a physical model of a Sony TC-260 tape machine, starting from basic physical principles. \section{Continuous Time System} @@ -262,10 +262,10 @@ or, \subsection{Hysteresis} Beginning from \cref{eq5}, we can find the derivative of $M$ w.r.t. time, as in \cite{Hysteresis}: -\begin{multline} - \frac{dM}{dt} = \frac{(1-c) \delta_M (M_sL(Q) - M)}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{dH}{dt} + \\ - c \frac{M_s}{a} \Big(\frac{dH}{dt} + \alpha \frac{dM}{dt} \Big) L'(Q) -\end{multline} +\begin{equation} + \frac{dM}{dt} = \frac{\frac{(1-c) \delta_M (M_sL(Q) - M)}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{dH}{dt} + c \frac{M_s}{a} \frac{dH}{dt} L'(Q)}{1 - c \alpha \frac{M_s}{a} L'(Q)} + \label{eq:dmdt} +\end{equation} % where $Q = \frac{H + \alpha M}{a}$, and @@ -273,52 +273,65 @@ where $Q = \frac{H + \alpha M}{a}$, and L'(x) = \frac{1}{x^2} - \coth^2(x) + 1 \end{equation} % -Taking the second derivative, we find: -\begin{multline} - \frac{d^2 M}{dt^2} = \frac{(1-c) \delta_M (M_sL(Q) - M)}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{d^2H}{dt^2}\\ - + \frac{(1-c) \delta_M (c \frac{M_s}{a} (\frac{dH}{dt} + \alpha \frac{dM}{dt}) L'(Q) - \dot{M})}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{dH}{dt}\\ - + \frac{(1-c) \delta_M (M_sL(Q) - M)(-\alpha (c \frac{M_s}{a} (\frac{dH}{dt} + \alpha \frac{dM}{dt}) L'(Q) - \dot{M}))}{((1-c) \delta k - \alpha (M_sL(Q) - M))^2} \frac{dH}{dt}\\ - + c \frac{M_s}{a} \Big(\frac{dH}{dt} c \frac{M_s}{a} (\frac{dH}{dt} + \alpha \frac{dM}{dt}) L''(Q) + \frac{d^2H}{dt^2} L'(Q) + \alpha \frac{dM}{dt} c \frac{M_s}{a} (\frac{dH}{dt} + \alpha \frac{dM}{dt}) L''(Q) + \alpha \frac{d^2M}{dt^2} L'(Q) \Big) -\end{multline} -% -where -\begin{equation} - L''(x) = 2 \coth(x) \cdot (\coth^2(x) - 1) - \frac{2}{x^3} -\end{equation} -% -Solving for $\frac{dM}{dt}$ and $\frac{d^2M}{dt^2}$, we get: +Note that \cref{eq:dmdt} can also be written in the general form for non-linear +Ordinary Differential Equations: \begin{equation} - \frac{dM}{dt} = \frac{\frac{(1-c) \delta_M (M_sL(Q) - M)}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{dH}{dt} + c \frac{M_s}{a} \frac{dH}{dt} L'(Q)}{1 - c \alpha \frac{M_s}{a} L'(Q)} = f(t, M, \vec{u}) + \frac{dM}{dt} = f(t,M,\vec{u}) \end{equation} -\begin{multline} - \frac{d^2 M}{dt^2} = \frac{1}{1 - c \alpha \frac{M_s}{a} L'(Q)} \Bigg[ -\frac{(1-c) \delta_M (M_sL(Q) - M)}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{d^2H}{dt^2}\\ -+ \frac{(1-c) \delta_M (c \frac{M_s}{a} (\frac{dH}{dt} + \alpha \frac{dM}{dt}) L'(Q) - \dot{M})}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{dH}{dt}\\ -+ \frac{(1-c) \delta_M (M_sL(Q) - M)(-\alpha (c \frac{M_s}{a} (\frac{dH}{dt} + \alpha \frac{dM}{dt}) L'(Q) - \dot{M}))}{((1-c) \delta k - \alpha (M_sL(Q) - M))^2} \frac{dH}{dt}\\ -+ c \frac{M_s}{a} \Big(\frac{d^2H}{dt^2} L'(Q) + c \frac{M_s}{a} L''(Q) (\dot{H} + \alpha \dot{M})^2 \Big) \Bigg] -\end{multline} -% where $\vec{u} = \begin{bmatrix} H \\ \dot{H} \end{bmatrix}$. \newline\newline -Using the trapezoidal rule: +Using the trapezoidal rule for derivative approximation, we find: \begin{equation} - \dot{\hat{H}}(n) = 2 \frac{\hat{H}(n) - \hat{H}(n-1)}{T} - \dot{\hat{H}}(n-1) + \dot{\hat{H}}(n) = 2\frac{\hat{H}(n) - \hat{H}(n-1)}{T} - \dot{\hat{H}}(n-1) \end{equation} +% +We can use the Runge-Kutta 4th order method \cite{Yeh} to find an explicit solution +for $\hat{M}(n)$: +\begin{align} +\begin{split} + k_1 &= T f \Big(n-1, \hat{M}(n-1), \hat{\vec{u}}(n-1) \Big)\\ + k_2 &= T f \Big(n - \frac{1}{2}, \hat{M}(n-1) + \frac{k_1}{2}, \hat{\vec{u}} \Big(n-\frac{1}{2} \Big) \Big)\\ + k_3 &= T f \Big(n- \frac{1}{2}, \hat{M}(n-1) + \frac{k_2}{2}, \hat{\vec{u}} \Big(n-\frac{1}{2} \Big) \Big)\\ + k_4 &= T f \Big(n, \hat{M}(n-1) + k_3, \hat{\vec{u}}(n) \Big)\\ + \hat{M}(n) &= \hat{M}(n-1) + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} +\end{split} +\end{align} +% +We use linear interpolation to find the half-sample values used to calculate $k_2$ and $k_3$. + +\subsubsection{Numerical Considerations} +To account for rounding errors in the Langevin function for values close to +zero, we use the following for numerical evaluation, as in \cite{Hysteresis}: \begin{equation} - \ddot{\hat{H}}(n) = 2 \frac{\dot{\hat{H}}(n) - \dot{\hat{H}}(n-1)}{T} - \ddot{\hat{H}}(n-1) + L(x) = \begin{cases} + \coth(x) - \frac{1}{x} & \text{for $|x| > 10^{-4}$} \\ + \frac{x}{3} & \text{otherwise} + \end{cases} +\end{equation} +\begin{equation} + L'(x) = \begin{cases} + \frac{1}{x^2} - \coth^{2}(x) + 1 & \text{for $|x| > 10^{-4}$} \\ + \frac{1}{3} & \text{otherwise} + \end{cases} \end{equation} -% -Then, using the semi-implicit trapezoidal rule for non-linear differential -equations \cite{Yeh}. -\begin{multline} - \hat{M}(n) = \hat{M}(n-1)\\ - + \frac{T}{2} \frac{f[n, \hat{M}(n-1), \hat{\vec{u}}(n)] + f[n-1, \hat{M}(n-1), \hat{\vec{u}}(n-1)]}{1 - \frac{T}{2}\ddot{\hat{M}}(n-1)} -\end{multline} +\subsubsection{Simulation} +The digitized hysteresis loop was implemented and tested offline +in \texttt{Python}, using the constants $M_s$, $a$, $\alpha$, $k$, +and $c$ from \cite{JilesAtherton1986}. For a sinusoidal input signal +with frequency 2kHz, and varying amplitude from 800 - 2000 Amperes per +meter, the following plot shows the Magnetisation output. + +\begin{figure}[ht] + \center + \includegraphics[width=3in]{../Simulations/Sim2-M_H.png} + \caption{\label{flowchart}{\it Digitized Hysteresis Loop}} +\end{figure} +% \subsection{Play Head} By combining \cref{eq11} with \cref{eq12,eq15}, we get: \begin{equation} diff --git a/Paper/references.bib b/Paper/references.bib @@ -78,3 +78,16 @@ booktitle = {Theory of Magnetic Recording, by H.~Neal Bertram, pp.~372.~ISBN 052 year = 2009, month = 6 } + +@ARTICLE{JilesAtherton1986, + author = {{Jiles}, D.~C. and {Atherton}, D.~L.}, + title = "{Theory of ferromagnetic hysteresis}", + journal = {Journal of Magnetism and Magnetic Materials}, + year = 1986, + month = sep, + volume = 61, + pages = {48-60}, + doi = {10.1016/0304-8853(86)90066-1}, + adsurl = {http://adsabs.harvard.edu/abs/1986JMMM...61...48J}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} diff --git a/Simulations/Sim2-M_H.png b/Simulations/Sim2-M_H.png Binary files differ. diff --git a/Simulations/hystersis.py b/Simulations/hystersis.py @@ -1,12 +1,15 @@ import numpy as np import matplotlib.pyplot as plt +from matplotlib import animation -T = 48000 -M_s = 1.6e6 -a = 1.1e3 +fs = 48000 +T = 1/fs # sample interval +M_s = 350000 # Jiles book +a = 1.1e3 # adjustable parameter alpha = 1.6e-3 k = 4.0e2 c = 1.7e-1 +#H_c (coercivity) = 25000 - 30000 A/m (Jiles book) # Langevin function def L (x): @@ -22,16 +25,9 @@ def L_d (x): else: return (1 / 3) -# Langevin 2nd derivative -def L_d2 (x): - if (abs(x) > 10 ** -3): - return 2 * (1 / np.tanh (x)) * ((1 / np.tanh (x)) ** 2 - 1) - (2 / x ** 3) - else: - return -(2 / 15) * x - # trapezoidal rule derivative def deriv (x_n, x_n1, xDeriv_n1): - return (2 / T) * (x_n - x_n1) - xDeriv_n1 + return ((2 / T) * (x_n - x_n1)) - xDeriv_n1 # dM/dt or "non-linear function" def f (M, H, H_d): @@ -51,45 +47,22 @@ def f (M, H, H_d): return (t1 + t2) / denominator -# d^2M/dt^2 -def M_d2 (M, M_d, H, H_d, H_d2): - Q = (H + alpha * M) / a - M_diff = M_s * L (Q) - M - delta = 1 if H_d > 0 else -1 - delta_M = 1 if np.sign (delta) == np.sign (M_diff) else 0 - L_prime = L_d (Q) - - denominator = 1 - c * alpha * (M_s / a) * L_prime - - t1_num = (1 - c) * delta_M * M_diff - t1_den = (1 - c) * delta * k - alpha * M_diff - t1 = (t1_num / t1_den) * H_d2 - - M_diff2 = c * (M_s / a) * (H_d + alpha * M_d) * L_d (Q) - M_d - t2_num = (1 - c) * delta_M * M_diff2 - t2 = (t2_num / t1_den) * H_d - - t3_num = (1 - c) * delta_M * M_diff * (-alpha) * M_diff2 - t3 = (t3_num / t1_den**2) * H_d - - L_2prime = L_d2 (Q) - t4 = c * (M_s / a) * (H_d2 * L_prime + c * (M_s / a) * L_2prime * (H_d + alpha * M_d)**2) - - return (t1 + t2 + t3 + t4) / denominator - -def M_n (M_n1, f_n, f_n1, M_d2_n1): - return M_n1 + (T / 2) * (f_n + f_n1) / (1 - (T/2) * M_d2_n1) - -t = np.linspace (0, 10, T * 50) -H_in = np.concatenate ((1000 * np.sin (2 * np.pi * 2 * t[0:T*5]), 900 * np.sin (2 * np.pi * 2 * t[T*5:T*10]), \ - 800 * np.sin (2 * np.pi * 2 * t[T*10:T*15]), 750 * np.sin (2 * np.pi * 2 * t[T*15:T*20]), \ - 700 * np.sin (2 * np.pi * 2 * t[T*20:T*25]), 650 * np.sin (2 * np.pi * 2 * t[T*25:T*30]), \ - 600 * np.sin (2 * np.pi * 2 * t[T*30:T*35]), 550 * np.sin (2 * np.pi * 2 * t[T*35:T*40]), - 500 * np.sin (2 * np.pi * 2 * t[T*40:T*45]), 400 * np.sin (2 * np.pi * 2 * t[T*45:T*50]))) +def M_n (M_n1, k1, k2, k3, k4): + return M_n1 + (k1 / 6) + (k2 / 3) + (k3 / 3) + (k4 / 6) + +#input signal +t = np.linspace (0, 1, fs * 50) +#H_in = 100 * np.sin (2 * np.pi * 100 * t) +freq = 2000 +H_in = np.concatenate ((2000 * np.sin (2 * np.pi * freq * t[0:fs*5]), 1800 * np.sin (2 * np.pi * freq * t[fs*5:fs*10]), \ + 1600 * np.sin (2 * np.pi * freq * t[fs*10:fs*15]), 1500 * np.sin (2 * np.pi * freq * t[fs*15:fs*20]), \ + 1400 * np.sin (2 * np.pi * freq * t[fs*20:fs*25]), 1300 * np.sin (2 * np.pi * freq * t[fs*25:fs*30]), \ + 1200 * np.sin (2 * np.pi * freq * t[fs*30:fs*35]), 1100 * np.sin (2 * np.pi * freq * t[fs*35:fs*40]), \ + 1000 * np.sin (2 * np.pi * freq * t[fs*40:fs*45]), 800 * np.sin (2 * np.pi * freq * t[fs*45:fs*50]))) # plt.plot (t, H_in) # plt.show() -M_out = np.zeros (T * 50) +M_out = np.zeros (fs * 50) M_n1 = 0 H_n1 = 0 H_d_n1 = 0 @@ -101,29 +74,33 @@ for H in H_in: H_d = deriv (H, H_n1, H_d_n1) H_d2 = deriv (H_d, H_d_n1, H_d2_n1) - f_n = f (M_n1, H, H_d) - f_n1 = f (M_n1, H_n1, H_d_n1) - M_d2_n1 = M_d2 (M_n1, f_n1, H_n1, H_d_n1, H_d2_n1) + k1 = T * f (M_n1, H_n1, H_d_n1) + k2 = T * f (M_n1 + k1/2, (H + H_n1) / 2, (H_d + H_d_n1) / 2) + k3 = T * f (M_n1 + k2/2, (H + H_n1) / 2, (H_d + H_d_n1) / 2) + k4 = T * f (M_n1 + k3, H, H_d) - M = M_n (M_n1, f_n, f_n1, M_d2_n1) + M = M_n (M_n1, k1, k2, k3, k4) M_n1 = M H_n1 = H H_d_n1 = H_d H_d2_n1 - H_d2 - M_out[n] = (M) + M_out[n] = M n += 1 - curPercent = (int) (n / (T * 50) * 100) - if (curPercent > percent): + curPercent = (int) (n / (fs * 50) * 100) + if (curPercent > percent + 4): percent = curPercent print (str (percent) + "% completed") MH = plt.figure (1) -plt.plot (H_in, M_out) -#MH.show() +plt.plot (H_in / 1000, M_out / M_s) +plt.xlabel ("Magnetic Field (A/m)") +plt.ylabel ("Tape Magnetisation (A/m)") +plt.title ("Simulated Ditigal Tape Magnetization Hysteresis Loop") +MH.show() Mt = plt.figure (2) -plt.plot (t, M_out) +plt.plot (t, M_out / M_s) plt.show()