sm64

A Super Mario 64 decompilation
Log | Files | Refs | README | LICENSE

gd_math.c (27455B)


      1 #include <PR/ultratypes.h>
      2 
      3 #include "debug_utils.h"
      4 #include "gd_macros.h"
      5 #include "gd_main.h"
      6 #include "gd_math.h"
      7 #include "gd_types.h"
      8 #include "macros.h"
      9 #include "renderer.h"
     10 
     11 /**
     12  * Finds the square root of a float by treating
     13  * it as a double and finding the square root from there.
     14  */
     15 f32 gd_sqrt_f(f32 val) {
     16     return (f32) gd_sqrt_d(val);
     17 }
     18 
     19 /**
     20  * Set mtx to a look-at matrix for the camera. The resulting transformation
     21  * transforms the world as if there exists a camera at position 'from' pointed
     22  * at the position 'to'.
     23  * An effective goddard copy of mtxf_lookat.
     24  */
     25 void gd_mat4f_lookat(Mat4f *mtx, f32 xFrom, f32 yFrom, f32 zFrom, f32 xTo, f32 yTo, f32 zTo,
     26                      f32 zColY, f32 yColY, f32 xColY) {
     27     f32 invLength;
     28 
     29     struct GdVec3f d;
     30     struct GdVec3f colX;
     31     struct GdVec3f norm;
     32 
     33     // No reason to do this? mtx is set lower.
     34     gd_set_identity_mat4(mtx);
     35 
     36     d.z = xTo - xFrom;
     37     d.y = yTo - yFrom;
     38     d.x = zTo - zFrom;
     39 
     40     invLength = ABS(d.z) + ABS(d.y) + ABS(d.x);
     41 
     42     // Scales 'd' if smaller than 10 or larger than 10,000 to be
     43     // of a magnitude of 10,000.
     44     if (invLength > 10000.0f || invLength < 10.0f) {
     45         norm.x = d.z;
     46         norm.y = d.y;
     47         norm.z = d.x;
     48         gd_normalize_vec3f(&norm);
     49         norm.x *= 10000.0f;
     50         norm.y *= 10000.0f;
     51         norm.z *= 10000.0f;
     52 
     53         d.z = norm.x;
     54         d.y = norm.y;
     55         d.x = norm.z;
     56     }
     57 
     58     invLength = -1.0 / gd_sqrt_f(SQ(d.z) + SQ(d.y) + SQ(d.x));
     59     d.z *= invLength;
     60     d.y *= invLength;
     61     d.x *= invLength;
     62 
     63     colX.z = yColY * d.x - xColY * d.y;
     64     colX.y = xColY * d.z - zColY * d.x;
     65     colX.x = zColY * d.y - yColY * d.z;
     66 
     67     invLength = 1.0 / gd_sqrt_f(SQ(colX.z) + SQ(colX.y) + SQ(colX.x));
     68 
     69     colX.z *= invLength;
     70     colX.y *= invLength;
     71     colX.x *= invLength;
     72 
     73     zColY = d.y * colX.x - d.x * colX.y;
     74     yColY = d.x * colX.z - d.z * colX.x;
     75     xColY = d.z * colX.y - d.y * colX.z;
     76 
     77     invLength = 1.0 / gd_sqrt_f(SQ(zColY) + SQ(yColY) + SQ(xColY));
     78 
     79     zColY *= invLength;
     80     yColY *= invLength;
     81     xColY *= invLength;
     82 
     83     (*mtx)[0][0] = colX.z;
     84     (*mtx)[1][0] = colX.y;
     85     (*mtx)[2][0] = colX.x;
     86     (*mtx)[3][0] = -(xFrom * colX.z + yFrom * colX.y + zFrom * colX.x);
     87 
     88     (*mtx)[0][1] = zColY;
     89     (*mtx)[1][1] = yColY;
     90     (*mtx)[2][1] = xColY;
     91     (*mtx)[3][1] = -(xFrom * zColY + yFrom * yColY + zFrom * xColY);
     92 
     93     (*mtx)[0][2] = d.z;
     94     (*mtx)[1][2] = d.y;
     95     (*mtx)[2][2] = d.x;
     96     (*mtx)[3][2] = -(xFrom * d.z + yFrom * d.y + zFrom * d.x);
     97 
     98     (*mtx)[0][3] = 0.0f;
     99     (*mtx)[1][3] = 0.0f;
    100     (*mtx)[2][3] = 0.0f;
    101     (*mtx)[3][3] = 1.0f;
    102 }
    103 
    104 /**
    105  * Scales a mat4f in each dimension by a vector.
    106  */
    107 void gd_scale_mat4f_by_vec3f(Mat4f *mtx, struct GdVec3f *vec) {
    108     (*mtx)[0][0] *= vec->x;
    109     (*mtx)[0][1] *= vec->x;
    110     (*mtx)[0][2] *= vec->x;
    111     (*mtx)[1][0] *= vec->y;
    112     (*mtx)[1][1] *= vec->y;
    113     (*mtx)[1][2] *= vec->y;
    114     (*mtx)[2][0] *= vec->z;
    115     (*mtx)[2][1] *= vec->z;
    116     (*mtx)[2][2] *= vec->z;
    117 }
    118 
    119 /**
    120  * Rotates the matrix 'mtx' about the vector given.
    121  */
    122 void gd_rot_mat_about_vec(Mat4f *mtx, struct GdVec3f *vec) {
    123     if (vec->x != 0.0f) {
    124         gd_absrot_mat4(mtx, GD_X_AXIS, vec->x);
    125     }
    126     if (vec->y != 0.0f) {
    127         gd_absrot_mat4(mtx, GD_Y_AXIS, vec->y);
    128     }
    129     if (vec->z != 0.0f) {
    130         gd_absrot_mat4(mtx, GD_Z_AXIS, vec->z);
    131     }
    132 }
    133 
    134 /**
    135  * Adds each component of a vector to the
    136  * translation column of a mat4f matrix.
    137  */
    138 void gd_add_vec3f_to_mat4f_offset(Mat4f *mtx, struct GdVec3f *vec) {
    139     UNUSED Mat4f temp;
    140     f32 z, y, x;
    141 
    142     x = vec->x;
    143     y = vec->y;
    144     z = vec->z;
    145 
    146     (*mtx)[3][0] += x;
    147     (*mtx)[3][1] += y;
    148     (*mtx)[3][2] += z;
    149 }
    150 
    151 /**
    152  * Creates a lookat matrix, but specifically from the perspective of the origin.
    153  * Rolls is only ever 0 in practice, and this is really only ever used once.
    154  *
    155  * Matrix has form-  | -(cz+sxy)/h sh  (cx-syz)/h 0 |
    156  *                   |  (sz-cxy)/h ch -(sx+cyz)/h 0 |
    157  *                   |     -x      -y     -z      0 |
    158  *                   |      0       0      0      1 |
    159  */
    160 void gd_create_origin_lookat(Mat4f *mtx, struct GdVec3f *vec, f32 roll) {
    161     f32 invertedHMag;
    162     f32 hMag;
    163     f32 c;
    164     f32 s;
    165     f32 radPerDeg = RAD_PER_DEG;
    166     struct GdVec3f unit;
    167 
    168     unit.x = vec->x;
    169     unit.y = vec->y;
    170     unit.z = vec->z;
    171 
    172     gd_normalize_vec3f(&unit);
    173     hMag = gd_sqrt_f(SQ(unit.x) + SQ(unit.z));
    174 
    175     roll *= radPerDeg; // convert roll from degrees to radians
    176     s = gd_sin_d(roll);
    177     c = gd_cos_d(roll);
    178 
    179     gd_set_identity_mat4(mtx);
    180     if (hMag != 0.0f) {
    181         invertedHMag = 1.0f / hMag;
    182         (*mtx)[0][0] = ((-unit.z * c) - (s * unit.y * unit.x)) * invertedHMag;
    183         (*mtx)[1][0] = ((unit.z * s) - (c * unit.y * unit.x)) * invertedHMag;
    184         (*mtx)[2][0] = -unit.x;
    185         (*mtx)[3][0] = 0.0f;
    186 
    187         (*mtx)[0][1] = s * hMag;
    188         (*mtx)[1][1] = c * hMag;
    189         (*mtx)[2][1] = -unit.y;
    190         (*mtx)[3][1] = 0.0f;
    191 
    192         (*mtx)[0][2] = ((c * unit.x) - (s * unit.y * unit.z)) * invertedHMag;
    193         (*mtx)[1][2] = ((-s * unit.x) - (c * unit.y * unit.z)) * invertedHMag;
    194         (*mtx)[2][2] = -unit.z;
    195         (*mtx)[3][2] = 0.0f;
    196 
    197         (*mtx)[0][3] = 0.0f;
    198         (*mtx)[1][3] = 0.0f;
    199         (*mtx)[2][3] = 0.0f;
    200         (*mtx)[3][3] = 1.0f;
    201     } else {
    202         (*mtx)[0][0] = 0.0f;
    203         (*mtx)[1][0] = 1.0f;
    204         (*mtx)[2][0] = 0.0f;
    205         (*mtx)[3][0] = 0.0f;
    206 
    207         (*mtx)[0][1] = 0.0f;
    208         (*mtx)[1][1] = 0.0f;
    209         (*mtx)[2][1] = 1.0f;
    210         (*mtx)[3][1] = 0.0f;
    211 
    212         (*mtx)[0][2] = 1.0f;
    213         (*mtx)[1][2] = 0.0f;
    214         (*mtx)[2][2] = 0.0f;
    215         (*mtx)[3][2] = 0.0f;
    216 
    217         (*mtx)[0][3] = 0.0f;
    218         (*mtx)[1][3] = 0.0f;
    219         (*mtx)[2][3] = 0.0f;
    220         (*mtx)[3][3] = 1.0f;
    221     }
    222 }
    223 
    224 /**
    225  * Clamps a float within a set range about zero.
    226  */
    227 f32 gd_clamp_f32(f32 a, f32 b) {
    228     if (b < a) {
    229         a = b;
    230     } else if (a < -b) {
    231         a = -b;
    232     }
    233 
    234     return a;
    235 }
    236 
    237 /**
    238  * Clamps a vector within a set range about zero.
    239  */
    240 void gd_clamp_vec3f(struct GdVec3f *vec, f32 limit) {
    241     if (vec->x > limit) {
    242         vec->x = limit;
    243     } else if (vec->x < -limit) {
    244         vec->x = -limit;
    245     }
    246 
    247     if (vec->y > limit) {
    248         vec->y = limit;
    249     } else if (vec->y < -limit) {
    250         vec->y = -limit;
    251     }
    252 
    253     if (vec->z > limit) {
    254         vec->z = limit;
    255     } else if (vec->z < -limit) {
    256         vec->z = -limit;
    257     }
    258 }
    259 
    260 /**
    261  * Rotates a 2D vector by some angle in degrees.
    262  */
    263 void gd_rot_2d_vec(f32 deg, f32 *x, f32 *y) {
    264     f32 xP;
    265     f32 yP;
    266     f32 rad;
    267 
    268     rad = deg / DEG_PER_RAD;
    269     xP = (*x * gd_cos_d(rad)) - (*y * gd_sin_d(rad));
    270     yP = (*x * gd_sin_d(rad)) + (*y * gd_cos_d(rad));
    271     *x = xP;
    272     *y = yP;
    273 }
    274 
    275 /**
    276  * Rotates a matrix about one of its rows.
    277  */
    278 void UNUSED gd_rot_mat_about_row(Mat4f *mat, s32 row, f32 ang) {
    279     Mat4f rot;
    280     struct GdVec3f vec;
    281 
    282     vec.x = (*mat)[row][0];
    283     vec.y = (*mat)[row][1];
    284     vec.z = (*mat)[row][2];
    285 
    286     gd_create_rot_mat_angular(&rot, &vec, ang / 2.0);
    287     gd_mult_mat4f(mat, &rot, mat);
    288 }
    289 
    290 /**
    291  * Rotates a mat4f matrix about a given axis
    292  * by a set angle in degrees.
    293  */
    294 void gd_absrot_mat4(Mat4f *mtx, s32 axisnum, f32 ang) {
    295     Mat4f rMat;
    296     struct GdVec3f rot;
    297 
    298     switch (axisnum) {
    299         case GD_X_AXIS:
    300             rot.x = 1.0f;
    301             rot.y = 0.0f;
    302             rot.z = 0.0f;
    303             break;
    304         case GD_Y_AXIS:
    305             rot.x = 0.0f;
    306             rot.y = 1.0f;
    307             rot.z = 0.0f;
    308             break;
    309         case GD_Z_AXIS:
    310             rot.x = 0.0f;
    311             rot.y = 0.0f;
    312             rot.z = 1.0f;
    313             break;
    314         default:
    315             fatal_printf("absrot_matrix4(): Bad axis num");
    316     }
    317 
    318     gd_create_rot_mat_angular(&rMat, &rot, ang / 2.0); //? 2.0f
    319     gd_mult_mat4f(mtx, &rMat, mtx);
    320 }
    321 
    322 
    323 f32 gd_vec3f_magnitude(struct GdVec3f *vec) {
    324     return gd_sqrt_f(SQ(vec->x) + SQ(vec->y) + SQ(vec->z));
    325 }
    326 
    327 /**
    328  * Normalizes a vec3f to have a length of 1.
    329  */
    330 s32 gd_normalize_vec3f(struct GdVec3f *vec) {
    331     f32 mag;
    332     if ((mag = SQ(vec->x) + SQ(vec->y) + SQ(vec->z)) == 0.0f) {
    333         return FALSE;
    334     }
    335 
    336     mag = gd_sqrt_f(mag);
    337     // gd_sqrt_f rounds near 0 numbers to 0, so verify again.
    338     if (mag == 0.0f) {
    339         vec->x = 0.0f;
    340         vec->y = 0.0f;
    341         vec->z = 0.0f;
    342         return FALSE;
    343     }
    344 
    345     vec->x /= mag;
    346     vec->y /= mag;
    347     vec->z /= mag;
    348 
    349     return TRUE;
    350 }
    351 
    352 /**
    353  * Stores the cross product of 'a' x 'b' in 'dst'.
    354  */
    355 void gd_cross_vec3f(struct GdVec3f *a, struct GdVec3f *b, struct GdVec3f *dst) {
    356     struct GdVec3f result;
    357 
    358     result.x = (a->y * b->z) - (a->z * b->y);
    359     result.y = (a->z * b->x) - (a->x * b->z);
    360     result.z = (a->x * b->y) - (a->y * b->x);
    361 
    362     dst->x = result.x;
    363     dst->y = result.y;
    364     dst->z = result.z;
    365 }
    366 
    367 /**
    368  * Returns the dot product of 'a' and 'b'.
    369  */
    370 f32 gd_dot_vec3f(struct GdVec3f *a, struct GdVec3f *b) {
    371     return (a->x * b->x) + (a->y * b->y) + (a->z * b->z);
    372 }
    373 
    374 /**
    375  * Inverts each element of src into dst.
    376  */
    377 void UNUSED gd_invert_elements_mat4f(Mat4f *src, Mat4f *dst) {
    378     s32 i;
    379     s32 j;
    380 
    381     for (i = 0; i < 4; i++) {
    382         for (j = 0; j < 4; j++) {
    383             (*dst)[i][j] = 1.0f / (*src)[i][j];
    384         }
    385     }
    386 }
    387 
    388 /**
    389  * Inverts a matrix from src and stores it into dst.
    390  * Reaches a fatal_print if the determinant is 0.
    391  */
    392 void gd_inverse_mat4f(Mat4f *src, Mat4f *dst) {
    393     s32 i;
    394     s32 j;
    395     f32 determinant;
    396 
    397     gd_adjunct_mat4f(src, dst);
    398     determinant = gd_mat4f_det(dst);
    399 
    400     if (ABS(determinant) < 1e-5) { //? 1e-5f
    401         fatal_print("Non-singular matrix, no inverse!\n");
    402     }
    403 
    404     for (i = 0; i < 4; i++) {
    405         for (j = 0; j < 4; j++) {
    406             (*dst)[i][j] /= determinant;
    407         }
    408     }
    409 }
    410 
    411 /**
    412  * Takes a matrix from src and converts it into its adjunct in dst.
    413  */
    414 void gd_adjunct_mat4f(Mat4f *src, Mat4f *dst) {
    415     struct InvMat4 inv;
    416 
    417     inv.r3.c3 = (*src)[0][0];
    418     inv.r2.c3 = (*src)[0][1];
    419     inv.r1.c3 = (*src)[0][2];
    420     inv.r0.c3 = (*src)[0][3];
    421     inv.r3.c2 = (*src)[1][0];
    422     inv.r2.c2 = (*src)[1][1];
    423     inv.r1.c2 = (*src)[1][2];
    424     inv.r0.c2 = (*src)[1][3];
    425     inv.r3.c1 = (*src)[2][0];
    426     inv.r2.c1 = (*src)[2][1];
    427     inv.r1.c1 = (*src)[2][2];
    428     inv.r0.c1 = (*src)[2][3];
    429     inv.r3.c0 = (*src)[3][0];
    430     inv.r2.c0 = (*src)[3][1];
    431     inv.r1.c0 = (*src)[3][2];
    432     inv.r0.c0 = (*src)[3][3];
    433 
    434     (*dst)[0][0] = gd_3x3_det(inv.r2.c2, inv.r2.c1, inv.r2.c0, inv.r1.c2, inv.r1.c1, inv.r1.c0,
    435                                  inv.r0.c2, inv.r0.c1, inv.r0.c0);
    436     (*dst)[1][0] = -gd_3x3_det(inv.r3.c2, inv.r3.c1, inv.r3.c0, inv.r1.c2, inv.r1.c1, inv.r1.c0,
    437                                   inv.r0.c2, inv.r0.c1, inv.r0.c0);
    438     (*dst)[2][0] = gd_3x3_det(inv.r3.c2, inv.r3.c1, inv.r3.c0, inv.r2.c2, inv.r2.c1, inv.r2.c0,
    439                                  inv.r0.c2, inv.r0.c1, inv.r0.c0);
    440     (*dst)[3][0] = -gd_3x3_det(inv.r3.c2, inv.r3.c1, inv.r3.c0, inv.r2.c2, inv.r2.c1, inv.r2.c0,
    441                                   inv.r1.c2, inv.r1.c1, inv.r1.c0);
    442     (*dst)[0][1] = -gd_3x3_det(inv.r2.c3, inv.r2.c1, inv.r2.c0, inv.r1.c3, inv.r1.c1, inv.r1.c0,
    443                                   inv.r0.c3, inv.r0.c1, inv.r0.c0);
    444     (*dst)[1][1] = gd_3x3_det(inv.r3.c3, inv.r3.c1, inv.r3.c0, inv.r1.c3, inv.r1.c1, inv.r1.c0,
    445                                  inv.r0.c3, inv.r0.c1, inv.r0.c0);
    446     (*dst)[2][1] = -gd_3x3_det(inv.r3.c3, inv.r3.c1, inv.r3.c0, inv.r2.c3, inv.r2.c1, inv.r2.c0,
    447                                   inv.r0.c3, inv.r0.c1, inv.r0.c0);
    448     (*dst)[3][1] = gd_3x3_det(inv.r3.c3, inv.r3.c1, inv.r3.c0, inv.r2.c3, inv.r2.c1, inv.r2.c0,
    449                                  inv.r1.c3, inv.r1.c1, inv.r1.c0);
    450     (*dst)[0][2] = gd_3x3_det(inv.r2.c3, inv.r2.c2, inv.r2.c0, inv.r1.c3, inv.r1.c2, inv.r1.c0,
    451                                  inv.r0.c3, inv.r0.c2, inv.r0.c0);
    452     (*dst)[1][2] = -gd_3x3_det(inv.r3.c3, inv.r3.c2, inv.r3.c0, inv.r1.c3, inv.r1.c2, inv.r1.c0,
    453                                   inv.r0.c3, inv.r0.c2, inv.r0.c0);
    454     (*dst)[2][2] = gd_3x3_det(inv.r3.c3, inv.r3.c2, inv.r3.c0, inv.r2.c3, inv.r2.c2, inv.r2.c0,
    455                                  inv.r0.c3, inv.r0.c2, inv.r0.c0);
    456     (*dst)[3][2] = -gd_3x3_det(inv.r3.c3, inv.r3.c2, inv.r3.c0, inv.r2.c3, inv.r2.c2, inv.r2.c0,
    457                                   inv.r1.c3, inv.r1.c2, inv.r1.c0);
    458     (*dst)[0][3] = -gd_3x3_det(inv.r2.c3, inv.r2.c2, inv.r2.c1, inv.r1.c3, inv.r1.c2, inv.r1.c1,
    459                                   inv.r0.c3, inv.r0.c2, inv.r0.c1);
    460     (*dst)[1][3] = gd_3x3_det(inv.r3.c3, inv.r3.c2, inv.r3.c1, inv.r1.c3, inv.r1.c2, inv.r1.c1,
    461                                  inv.r0.c3, inv.r0.c2, inv.r0.c1);
    462     (*dst)[2][3] = -gd_3x3_det(inv.r3.c3, inv.r3.c2, inv.r3.c1, inv.r2.c3, inv.r2.c2, inv.r2.c1,
    463                                   inv.r0.c3, inv.r0.c2, inv.r0.c1);
    464     (*dst)[3][3] = gd_3x3_det(inv.r3.c3, inv.r3.c2, inv.r3.c1, inv.r2.c3, inv.r2.c2, inv.r2.c1,
    465                                  inv.r1.c3, inv.r1.c2, inv.r1.c1);
    466 }
    467 
    468 /**
    469  * Returns the determinant of a mat4f matrix.
    470  */
    471 f32 gd_mat4f_det(Mat4f *mtx) {
    472     f32 det;
    473     struct InvMat4 inv;
    474 
    475     inv.r3.c3 = (*mtx)[0][0];
    476     inv.r2.c3 = (*mtx)[0][1];
    477     inv.r1.c3 = (*mtx)[0][2];
    478     inv.r0.c3 = (*mtx)[0][3];
    479     inv.r3.c2 = (*mtx)[1][0];
    480     inv.r2.c2 = (*mtx)[1][1];
    481     inv.r1.c2 = (*mtx)[1][2];
    482     inv.r0.c2 = (*mtx)[1][3];
    483     inv.r3.c1 = (*mtx)[2][0];
    484     inv.r2.c1 = (*mtx)[2][1];
    485     inv.r1.c1 = (*mtx)[2][2];
    486     inv.r0.c1 = (*mtx)[2][3];
    487     inv.r3.c0 = (*mtx)[3][0];
    488     inv.r2.c0 = (*mtx)[3][1];
    489     inv.r1.c0 = (*mtx)[3][2];
    490     inv.r0.c0 = (*mtx)[3][3];
    491 
    492     det = (inv.r3.c3
    493                 * gd_3x3_det(inv.r2.c2, inv.r2.c1, inv.r2.c0,
    494                              inv.r1.c2, inv.r1.c1, inv.r1.c0,
    495                              inv.r0.c2, inv.r0.c1, inv.r0.c0)
    496            - inv.r2.c3
    497                 * gd_3x3_det(inv.r3.c2, inv.r3.c1, inv.r3.c0,
    498                              inv.r1.c2, inv.r1.c1, inv.r1.c0,
    499                              inv.r0.c2, inv.r0.c1, inv.r0.c0))
    500           + inv.r1.c3
    501                 * gd_3x3_det(inv.r3.c2, inv.r3.c1, inv.r3.c0,
    502                              inv.r2.c2, inv.r2.c1, inv.r2.c0,
    503                              inv.r0.c2, inv.r0.c1, inv.r0.c0)
    504           - inv.r0.c3
    505                 * gd_3x3_det(inv.r3.c2, inv.r3.c1, inv.r3.c0,
    506                              inv.r2.c2, inv.r2.c1, inv.r2.c0,
    507                              inv.r1.c2, inv.r1.c1, inv.r1.c0);
    508 
    509     return det;
    510 }
    511 
    512 /**
    513  * Takes the individual values of a 3 by 3 matrix and
    514  * returns the determinant.
    515  */
    516 f32 gd_3x3_det(f32 r0c0, f32 r0c1, f32 r0c2,
    517                f32 r1c0, f32 r1c1, f32 r1c2,
    518                f32 r2c0, f32 r2c1, f32 r2c2) {
    519     f32 det;
    520 
    521     det = r0c0 * gd_2x2_det(r1c1, r1c2, r2c1, r2c2) - r1c0 * gd_2x2_det(r0c1, r0c2, r2c1, r2c2)
    522           + r2c0 * gd_2x2_det(r0c1, r0c2, r1c1, r1c2);
    523 
    524     return det;
    525 }
    526 
    527 /**
    528  * Takes the individual values of a 2 by 2 matrix and
    529  * returns the determinant.
    530  */
    531 f32 gd_2x2_det(f32 a, f32 b, f32 c, f32 d) {
    532     f32 det = a * d - b * c;
    533 
    534     return det;
    535 }
    536 
    537 /**
    538  * Creates a vector negative to what was passed in. Also sets the first row of a mat4f
    539  * to 1 0 0 0. Perhaps meant to be used at the end of gd_create_quat_rot_mat? Not
    540  * sure of the purpose of the vector portion, though.
    541  */
    542 void UNUSED gd_create_neg_vec_zero_first_mat_row(Mat4f *mtx, struct GdVec3f *vec, f32 x, f32 y, f32 z) {
    543     s32 i;
    544 
    545     vec->x = -x;
    546     vec->y = -y;
    547     vec->z = -z;
    548 
    549     (*mtx)[0][0] = 1.0f;
    550 
    551     for (i = 1; i < 4; i++) {
    552         (*mtx)[0][i] = 0.0f;
    553     }
    554 }
    555 
    556 /**
    557  * This function quite literally does nothing.
    558  * Seems to have been meant to create a vector from a quaternion?
    559  */
    560 void UNUSED gd_broken_quat_to_vec3f(f32 quat[4], struct GdVec3f *vec, f32 zHalf, s32 i, s32 run) {
    561     s32 j;
    562     s32 k;
    563     UNUSED f32 jVal;
    564     UNUSED f32 kVal;
    565     UNUSED struct GdVec3f uVec;
    566     struct GdVec3f tVec;
    567 
    568     tVec.x = vec->x;
    569     tVec.y = vec->y;
    570     tVec.z = vec->z;
    571 
    572     if (run < 0) {
    573         goto end;
    574     }
    575 
    576     if ((j = i + 1) >= 4) {
    577         j = 1;
    578     }
    579 
    580     if ((k = j + 1) >= 4) {
    581         k = 1;
    582     }
    583 
    584     jVal = quat[j];
    585     kVal = quat[k];
    586     uVec.x = quat[0];
    587     uVec.y = quat[i];
    588     uVec.z = zHalf + zHalf;
    589 
    590 end:
    591     vec->x = tVec.x;
    592     vec->y = tVec.y;
    593     vec->z = tVec.z;
    594 }
    595 
    596 /**
    597  * This function is a pitch rotation of a quaternion, with the sign allowing both regular
    598  * and inverse multiplication.
    599  */
    600 void UNUSED gd_quat_rotation(f32 quat[4], UNUSED s32 unused, f32 c, f32 s, s32 i, s32 sign) {
    601     s32 j;
    602     s32 k;
    603     f32 quatVal;
    604     UNUSED u8 filler[8];
    605 
    606     if ((j = i + 1) >= 4) {
    607         j = 1;
    608     }
    609     if ((k = j + 1) >= 4) {
    610         k = 1;
    611     }
    612 
    613     quatVal = quat[i];
    614     quat[i] = sign * s * quat[0] + quatVal * c;
    615     quat[0] = quat[0] * c - sign * s * quatVal;
    616 
    617     quatVal = quat[j];
    618     quat[j] = quat[k] * s + quatVal * c;
    619     quat[k] = quat[k] * c - s * quatVal;
    620 }
    621 
    622 /**
    623  * Shifts a matrix up by one row, putting the top row on bottom.
    624  */
    625 void gd_shift_mat_up(Mat4f *mtx) {
    626     s32 i;
    627     s32 j;
    628     f32 temp[3];
    629 
    630     for (i = 0; i < 3; i++) {
    631         temp[i] = (*mtx)[0][i + 1];
    632     }
    633     for (i = 1; i < 4; i++) {
    634         for (j = 1; j < 4; j++) {
    635             (*mtx)[i - 1][j - 1] = (*mtx)[i][j];
    636         }
    637     }
    638 
    639     (*mtx)[0][3] = 0.0f;
    640     (*mtx)[1][3] = 0.0f;
    641     (*mtx)[2][3] = 0.0f;
    642     (*mtx)[3][3] = 1.0f;
    643 
    644     for (i = 0; i < 3; i++) {
    645         (*mtx)[3][i] = temp[i];
    646     }
    647 }
    648 
    649 /**
    650  * Creates a rotation matrix from a quaternion.
    651  *
    652  * Has form-
    653  * | 1        -               -               -        |
    654  * | 0 w^2+i^2-j^2-k^2     2ij+2wk         2ik+2wj     |
    655  * | 0     2ij-2wk     w^2+j^2-i^2-k^2     2jk+2wi     |
    656  * | 0     2ik+2wj         2jk-2wi     w^2+k^2-i^2-j^2 |
    657  *
    658  * Potentially broken if 'mtx' is not an identity matrix/zero'ed.
    659  */
    660 void UNUSED gd_create_quat_rot_mat(f32 quat[4], UNUSED s32 unused, Mat4f *mtx) {
    661     f32 twoIJ;
    662     f32 two0K;
    663     f32 sqQuat[4];
    664     s32 i;
    665     s32 j;
    666     s32 k;
    667 
    668     for (i = 0; i < 4; i++) {
    669         sqQuat[i] = SQ(quat[i]);
    670     }
    671 
    672     for (i = 1; i < 4; i++) {
    673         if ((j = i + 1) >= 4) {
    674             j = 1;
    675         }
    676 
    677         if ((k = j + 1) >= 4) {
    678             k = 1;
    679         }
    680 
    681         twoIJ = 2.0 * quat[i] * quat[j];
    682         two0K = 2.0 * quat[k] * quat[0];
    683 
    684         (*mtx)[j][i] = twoIJ - two0K;
    685         (*mtx)[i][j] = twoIJ + two0K;
    686         (*mtx)[i][i] = sqQuat[i] + sqQuat[0] - sqQuat[j] - sqQuat[k];
    687         (*mtx)[i][0] = 0.0f;
    688     }
    689 
    690     //! The first row only ever has the first value set to 1, but the
    691     //! latter portions remain what they were originally. Perhaps this was meant
    692     //! to call gd_create_neg_vec_zero_first_mat_row?
    693     (*mtx)[0][0] = 1.0f;
    694     gd_shift_mat_up(mtx);
    695 }
    696 
    697 /**
    698  * Creates a rotation matrix to multiply the primary matrix by.
    699  * s/c are sin(angle)/cos(angle). That angular rotation is about vector
    700  * 'vec'.
    701  *
    702  * Matrix has form-
    703  *
    704  * | (1-c)z^2+c (1-c)zy-sx (1-c)xz-sy 0 |
    705  * | (1-c)zy-sx (1-c)y^2+c (1-c)xy-sz 0 |
    706  * | (1-c)xz-sy (1-c)xy-sz (1-c)x^2+c 0 |
    707  * |      0          0          0     1 |
    708  */
    709 void gd_create_rot_matrix(Mat4f *mtx, struct GdVec3f *vec, f32 s, f32 c) {
    710     f32 oneMinusCos;
    711     struct GdVec3f rev;
    712 
    713     rev.z = vec->x;
    714     rev.y = vec->y;
    715     rev.x = vec->z;
    716 
    717     oneMinusCos = 1.0 - c;
    718 
    719     (*mtx)[0][0] = oneMinusCos * rev.z * rev.z + c;
    720     (*mtx)[0][1] = oneMinusCos * rev.z * rev.y + s * rev.x;
    721     (*mtx)[0][2] = oneMinusCos * rev.z * rev.x - s * rev.y;
    722     (*mtx)[0][3] = 0.0f;
    723 
    724     (*mtx)[1][0] = oneMinusCos * rev.z * rev.y - s * rev.x;
    725     (*mtx)[1][1] = oneMinusCos * rev.y * rev.y + c;
    726     (*mtx)[1][2] = oneMinusCos * rev.y * rev.x + s * rev.z;
    727     (*mtx)[1][3] = 0.0f;
    728 
    729     (*mtx)[2][0] = oneMinusCos * rev.z * rev.x + s * rev.y;
    730     (*mtx)[2][1] = oneMinusCos * rev.y * rev.x - s * rev.z;
    731     (*mtx)[2][2] = oneMinusCos * rev.x * rev.x + c;
    732     (*mtx)[2][3] = 0.0f;
    733 
    734     (*mtx)[3][0] = 0.0f;
    735     (*mtx)[3][1] = 0.0f;
    736     (*mtx)[3][2] = 0.0f;
    737     (*mtx)[3][3] = 1.0f;
    738 }
    739 
    740 /**
    741  * Creates a rotation matrix about vector 'vec' with ang in degrees.
    742  */
    743 void gd_create_rot_mat_angular(Mat4f *mtx, struct GdVec3f *vec, f32 ang) {
    744     f32 s;
    745     f32 c;
    746 
    747     s = gd_sin_d(ang / (DEG_PER_RAD / 2.0));
    748     c = gd_cos_d(ang / (DEG_PER_RAD / 2.0));
    749 
    750     gd_create_rot_matrix(mtx, vec, s, c);
    751 }
    752 
    753 /**
    754  * Sets a mat4f matrix to an identity matrix.
    755  */
    756 void gd_set_identity_mat4(Mat4f *mtx) {
    757     (*mtx)[0][0] = 1.0f;
    758     (*mtx)[0][1] = 0.0f;
    759     (*mtx)[0][2] = 0.0f;
    760     (*mtx)[0][3] = 0.0f;
    761     (*mtx)[1][0] = 0.0f;
    762     (*mtx)[1][1] = 1.0f;
    763     (*mtx)[1][2] = 0.0f;
    764     (*mtx)[1][3] = 0.0f;
    765     (*mtx)[2][0] = 0.0f;
    766     (*mtx)[2][1] = 0.0f;
    767     (*mtx)[2][2] = 1.0f;
    768     (*mtx)[2][3] = 0.0f;
    769     (*mtx)[3][0] = 0.0f;
    770     (*mtx)[3][1] = 0.0f;
    771     (*mtx)[3][2] = 0.0f;
    772     (*mtx)[3][3] = 1.0f;
    773 }
    774 
    775 /**
    776  * Copies a mat4f from src to dst.
    777  */
    778 void gd_copy_mat4f(const Mat4f *src, Mat4f *dst) {
    779     (*dst)[0][0] = (*src)[0][0];
    780     (*dst)[0][1] = (*src)[0][1];
    781     (*dst)[0][2] = (*src)[0][2];
    782     (*dst)[0][3] = (*src)[0][3];
    783     (*dst)[1][0] = (*src)[1][0];
    784     (*dst)[1][1] = (*src)[1][1];
    785     (*dst)[1][2] = (*src)[1][2];
    786     (*dst)[1][3] = (*src)[1][3];
    787     (*dst)[2][0] = (*src)[2][0];
    788     (*dst)[2][1] = (*src)[2][1];
    789     (*dst)[2][2] = (*src)[2][2];
    790     (*dst)[2][3] = (*src)[2][3];
    791     (*dst)[3][0] = (*src)[3][0];
    792     (*dst)[3][1] = (*src)[3][1];
    793     (*dst)[3][2] = (*src)[3][2];
    794     (*dst)[3][3] = (*src)[3][3];
    795 }
    796 
    797 /**
    798  * Transforms a vec3f, rotating with the main 3x3 portion of the mat4f
    799  * and translating with the 4th column.
    800  */
    801 void gd_rotate_and_translate_vec3f(struct GdVec3f *vec, const Mat4f *mtx) {
    802     struct GdVec3f out;
    803 
    804     out.x = (*mtx)[0][0] * vec->x + (*mtx)[1][0] * vec->y + (*mtx)[2][0] * vec->z;
    805     out.y = (*mtx)[0][1] * vec->x + (*mtx)[1][1] * vec->y + (*mtx)[2][1] * vec->z;
    806     out.z = (*mtx)[0][2] * vec->x + (*mtx)[1][2] * vec->y + (*mtx)[2][2] * vec->z;
    807     out.x += (*mtx)[3][0];
    808     out.y += (*mtx)[3][1];
    809     out.z += (*mtx)[3][2];
    810 
    811     vec->x = out.x;
    812     vec->y = out.y;
    813     vec->z = out.z;
    814 }
    815 
    816 /**
    817  * Multiples a vec3f by the main 3x3 portion of a mat4f matrix.
    818  */
    819 void gd_mat4f_mult_vec3f(struct GdVec3f *vec, const Mat4f *mtx) {
    820     struct GdVec3f out;
    821 
    822     out.x = (*mtx)[0][0] * vec->x + (*mtx)[1][0] * vec->y + (*mtx)[2][0] * vec->z;
    823     out.y = (*mtx)[0][1] * vec->x + (*mtx)[1][1] * vec->y + (*mtx)[2][1] * vec->z;
    824     out.z = (*mtx)[0][2] * vec->x + (*mtx)[1][2] * vec->y + (*mtx)[2][2] * vec->z;
    825 
    826     vec->x = out.x;
    827     vec->y = out.y;
    828     vec->z = out.z;
    829 }
    830 
    831 #define MAT4_DOT_PROD(A, B, R, row, col)                                                               \
    832     {                                                                                                  \
    833         (R)[(row)][(col)] = (A)[(row)][0] * (B)[0][(col)];                                             \
    834         (R)[(row)][(col)] += (A)[(row)][1] * (B)[1][(col)];                                            \
    835         (R)[(row)][(col)] += (A)[(row)][2] * (B)[2][(col)];                                            \
    836         (R)[(row)][(col)] += (A)[(row)][3] * (B)[3][(col)];                                            \
    837     }
    838 
    839 #define MAT4_MULTIPLY(A, B, R)                                                                         \
    840     {                                                                                                  \
    841         MAT4_DOT_PROD((A), (B), (R), 0, 0);                                                            \
    842         MAT4_DOT_PROD((A), (B), (R), 0, 1);                                                            \
    843         MAT4_DOT_PROD((A), (B), (R), 0, 2);                                                            \
    844         MAT4_DOT_PROD((A), (B), (R), 0, 3);                                                            \
    845         MAT4_DOT_PROD((A), (B), (R), 1, 0);                                                            \
    846         MAT4_DOT_PROD((A), (B), (R), 1, 1);                                                            \
    847         MAT4_DOT_PROD((A), (B), (R), 1, 2);                                                            \
    848         MAT4_DOT_PROD((A), (B), (R), 1, 3);                                                            \
    849         MAT4_DOT_PROD((A), (B), (R), 2, 0);                                                            \
    850         MAT4_DOT_PROD((A), (B), (R), 2, 1);                                                            \
    851         MAT4_DOT_PROD((A), (B), (R), 2, 2);                                                            \
    852         MAT4_DOT_PROD((A), (B), (R), 2, 3);                                                            \
    853         MAT4_DOT_PROD((A), (B), (R), 3, 0);                                                            \
    854         MAT4_DOT_PROD((A), (B), (R), 3, 1);                                                            \
    855         MAT4_DOT_PROD((A), (B), (R), 3, 2);                                                            \
    856         MAT4_DOT_PROD((A), (B), (R), 3, 3);                                                            \
    857     }
    858 
    859 /**
    860  * Multiplies two Mat4f matrices and puts it in dst.
    861  */
    862 void gd_mult_mat4f(const Mat4f *mA, const Mat4f *mB, Mat4f *dst) {
    863     Mat4f res;
    864 
    865     MAT4_MULTIPLY((*mA), (*mB), res);
    866     gd_copy_mat4f(&res, dst);
    867 }
    868 
    869 #undef MAT4_MULTIPLY
    870 #undef MAT4_DOT_PROD
    871 
    872 /**
    873  * Prints a vec3f vector.
    874  *
    875  * Printed the prefix at some point, as shown by how the function is used.
    876  */
    877 void gd_print_vec(UNUSED const char *prefix, const struct GdVec3f *vec) {
    878     UNUSED u8 filler[8];
    879 
    880     printf("%f,%f,%f\n", vec->x, vec->y, vec->z);
    881     printf("\n");
    882 }
    883 
    884 /**
    885  * Prints a plane's boundaries.
    886  *
    887  * Printed a prefix at some point, as shone by how the function is used.
    888  */
    889 void gd_print_bounding_box(UNUSED const char *prefix, UNUSED const struct GdBoundingBox *p) {
    890     UNUSED u8 filler[8];
    891 
    892     printf("Min X = %f, Max X = %f \n", p->minX, p->maxX);
    893     printf("Min Y = %f, Max Y = %f \n", p->minY, p->maxY);
    894     printf("Min Z = %f, Max Z = %f \n", p->minZ, p->maxZ);
    895     printf("\n");
    896 }
    897 
    898 /**
    899  * Prints a Mat4f.
    900  *
    901  * Although the prefix input is unused, the one usage of this function
    902  * does have a "Matrix:" prefix, so it was definitely used at one point.
    903  */
    904 void gd_print_mtx(UNUSED const char *prefix, const Mat4f *mtx) {
    905     s32 i;
    906     s32 j;
    907 
    908     for (i = 0; i < 4; i++) {
    909         for (j = 0; j < 4; j++) {
    910             gd_printf("%f ", (*mtx)[i][j]);
    911         }
    912         gd_printf("\n");
    913     }
    914 }
    915 
    916 /**
    917  * Prints a quaternion along with a prefix.
    918  */
    919 void UNUSED gd_print_quat(const char *prefix, const f32 f[4]) {
    920     s32 i;
    921 
    922     gd_printf(prefix);
    923     for (i = 0; i < 4; i++) {
    924         gd_printf("%f ", f[i]);
    925     }
    926     gd_printf("\n");
    927 }
    928 
    929 /**
    930  * Rotates a matrix or creates a rotation matrix about a vector made from an offset
    931  * of 100 and the passed in x, y, and z values.
    932  */
    933 void UNUSED gd_rot_mat_offset(Mat4f *dst, f32 x, f32 y, f32 z, s32 copy) {
    934     f32 adj = 100.0f;
    935     Mat4f rot;
    936     f32 c;
    937     f32 s;
    938     f32 opp;
    939     f32 mag;
    940     struct GdVec3f vec;
    941 
    942     opp = gd_sqrt_f(SQ(x) + SQ(y) + SQ(z));
    943 
    944     if (opp == 0.0f) {
    945         if (copy) {
    946             gd_set_identity_mat4(dst);
    947         }
    948         return;
    949     }
    950 
    951     mag = gd_sqrt_f(SQ(adj) + SQ(opp));
    952     c = adj / mag;
    953     s = opp / mag;
    954 
    955     vec.x = -y / opp;
    956     vec.y = -x / opp;
    957     vec.z = -z / opp;
    958 
    959     gd_create_rot_matrix(&rot, &vec, s, c);
    960     if (!copy) {
    961         gd_mult_mat4f(dst, &rot, dst);
    962     } else {
    963         gd_copy_mat4f(&rot, dst);
    964     }
    965 }