math_util.c (26792B)
1 #include <ultra64.h> 2 3 #include "sm64.h" 4 #include "engine/graph_node.h" 5 #include "math_util.h" 6 #include "surface_collision.h" 7 8 #include "trig_tables.inc.c" 9 10 // Variables for a spline curve animation (used for the flight path in the grand star cutscene) 11 Vec4s *gSplineKeyframe; 12 float gSplineKeyframeFraction; 13 int gSplineState; 14 15 // These functions have bogus return values. 16 // Disable the compiler warning. 17 #pragma GCC diagnostic push 18 19 #ifdef __GNUC__ 20 #if defined(__clang__) 21 #pragma GCC diagnostic ignored "-Wreturn-stack-address" 22 #else 23 #pragma GCC diagnostic ignored "-Wreturn-local-addr" 24 #endif 25 #endif 26 27 /// Copy vector 'src' to 'dest' 28 void *vec3f_copy(Vec3f dest, Vec3f src) { 29 dest[0] = src[0]; 30 dest[1] = src[1]; 31 dest[2] = src[2]; 32 return &dest; //! warning: function returns address of local variable 33 } 34 35 /// Set vector 'dest' to (x, y, z) 36 void *vec3f_set(Vec3f dest, f32 x, f32 y, f32 z) { 37 dest[0] = x; 38 dest[1] = y; 39 dest[2] = z; 40 return &dest; //! warning: function returns address of local variable 41 } 42 43 /// Add vector 'a' to 'dest' 44 void *vec3f_add(Vec3f dest, Vec3f a) { 45 dest[0] += a[0]; 46 dest[1] += a[1]; 47 dest[2] += a[2]; 48 return &dest; //! warning: function returns address of local variable 49 } 50 51 /// Make 'dest' the sum of vectors a and b. 52 void *vec3f_sum(Vec3f dest, Vec3f a, Vec3f b) { 53 dest[0] = a[0] + b[0]; 54 dest[1] = a[1] + b[1]; 55 dest[2] = a[2] + b[2]; 56 return &dest; //! warning: function returns address of local variable 57 } 58 59 /// Copy vector src to dest 60 void *vec3s_copy(Vec3s dest, Vec3s src) { 61 dest[0] = src[0]; 62 dest[1] = src[1]; 63 dest[2] = src[2]; 64 return &dest; //! warning: function returns address of local variable 65 } 66 67 /// Set vector 'dest' to (x, y, z) 68 void *vec3s_set(Vec3s dest, s16 x, s16 y, s16 z) { 69 dest[0] = x; 70 dest[1] = y; 71 dest[2] = z; 72 return &dest; //! warning: function returns address of local variable 73 } 74 75 /// Add vector a to 'dest' 76 void *vec3s_add(Vec3s dest, Vec3s a) { 77 dest[0] += a[0]; 78 dest[1] += a[1]; 79 dest[2] += a[2]; 80 return &dest; //! warning: function returns address of local variable 81 } 82 83 /// Make 'dest' the sum of vectors a and b. 84 void *vec3s_sum(Vec3s dest, Vec3s a, Vec3s b) { 85 dest[0] = a[0] + b[0]; 86 dest[1] = a[1] + b[1]; 87 dest[2] = a[2] + b[2]; 88 return &dest; //! warning: function returns address of local variable 89 } 90 91 /// Subtract vector a from 'dest' 92 void *vec3s_sub(Vec3s dest, Vec3s a) { 93 dest[0] -= a[0]; 94 dest[1] -= a[1]; 95 dest[2] -= a[2]; 96 return &dest; //! warning: function returns address of local variable 97 } 98 99 /// Convert short vector a to float vector 'dest' 100 void *vec3s_to_vec3f(Vec3f dest, Vec3s a) { 101 dest[0] = a[0]; 102 dest[1] = a[1]; 103 dest[2] = a[2]; 104 return &dest; //! warning: function returns address of local variable 105 } 106 107 /** 108 * Convert float vector a to a short vector 'dest' by rounding the components 109 * to the nearest integer. 110 */ 111 void *vec3f_to_vec3s(Vec3s dest, Vec3f a) { 112 // add/subtract 0.5 in order to round to the nearest s32 instead of truncating 113 dest[0] = a[0] + ((a[0] > 0) ? 0.5f : -0.5f); 114 dest[1] = a[1] + ((a[1] > 0) ? 0.5f : -0.5f); 115 dest[2] = a[2] + ((a[2] > 0) ? 0.5f : -0.5f); 116 return &dest; //! warning: function returns address of local variable 117 } 118 119 /** 120 * Set 'dest' the normal vector of a triangle with vertices a, b and c. 121 * It is similar to vec3f_cross, but it calculates the vectors (c-b) and (b-a) 122 * at the same time. 123 */ 124 void *find_vector_perpendicular_to_plane(Vec3f dest, Vec3f a, Vec3f b, Vec3f c) { 125 dest[0] = (b[1] - a[1]) * (c[2] - b[2]) - (c[1] - b[1]) * (b[2] - a[2]); 126 dest[1] = (b[2] - a[2]) * (c[0] - b[0]) - (c[2] - b[2]) * (b[0] - a[0]); 127 dest[2] = (b[0] - a[0]) * (c[1] - b[1]) - (c[0] - b[0]) * (b[1] - a[1]); 128 return &dest; //! warning: function returns address of local variable 129 } 130 131 /// Make vector 'dest' the cross product of vectors a and b. 132 void *vec3f_cross(Vec3f dest, Vec3f a, Vec3f b) { 133 dest[0] = a[1] * b[2] - b[1] * a[2]; 134 dest[1] = a[2] * b[0] - b[2] * a[0]; 135 dest[2] = a[0] * b[1] - b[0] * a[1]; 136 return &dest; //! warning: function returns address of local variable 137 } 138 139 /// Scale vector 'dest' so it has length 1 140 void *vec3f_normalize(Vec3f dest) { 141 //! Possible division by zero 142 f32 invsqrt = 1.0f / sqrtf(dest[0] * dest[0] + dest[1] * dest[1] + dest[2] * dest[2]); 143 144 dest[0] *= invsqrt; 145 dest[1] *= invsqrt; 146 dest[2] *= invsqrt; 147 return &dest; //! warning: function returns address of local variable 148 } 149 150 #pragma GCC diagnostic pop 151 152 /// Copy matrix 'src' to 'dest' 153 void mtxf_copy(Mat4 dest, Mat4 src) { 154 register s32 i; 155 register u32 *d = (u32 *) dest; 156 register u32 *s = (u32 *) src; 157 158 for (i = 0; i < 16; i++) { 159 *d++ = *s++; 160 } 161 } 162 163 /** 164 * Set mtx to the identity matrix 165 */ 166 void mtxf_identity(Mat4 mtx) { 167 register s32 i; 168 register f32 *dest; 169 // These loops must be one line to match on -O2 170 171 // initialize everything except the first and last cells to 0 172 for (dest = (f32 *) mtx + 1, i = 0; i < 14; dest++, i++) *dest = 0; 173 174 // initialize the diagonal cells to 1 175 for (dest = (f32 *) mtx, i = 0; i < 4; dest += 5, i++) *dest = 1; 176 } 177 178 /** 179 * Set dest to a translation matrix of vector b 180 */ 181 void mtxf_translate(Mat4 dest, Vec3f b) { 182 mtxf_identity(dest); 183 dest[3][0] = b[0]; 184 dest[3][1] = b[1]; 185 dest[3][2] = b[2]; 186 } 187 188 /** 189 * Set mtx to a look-at matrix for the camera. The resulting transformation 190 * transforms the world as if there exists a camera at position 'from' pointed 191 * at the position 'to'. The up-vector is assumed to be (0, 1, 0), but the 'roll' 192 * angle allows a bank rotation of the camera. 193 */ 194 void mtxf_lookat(Mat4 mtx, Vec3f from, Vec3f to, s16 roll) { 195 register f32 invLength; 196 f32 dx; 197 f32 dz; 198 f32 xColY; 199 f32 yColY; 200 f32 zColY; 201 f32 xColZ; 202 f32 yColZ; 203 f32 zColZ; 204 f32 xColX; 205 f32 yColX; 206 f32 zColX; 207 208 dx = to[0] - from[0]; 209 dz = to[2] - from[2]; 210 211 invLength = -1.0 / sqrtf(dx * dx + dz * dz); 212 dx *= invLength; 213 dz *= invLength; 214 215 yColY = coss(roll); 216 xColY = sins(roll) * dz; 217 zColY = -sins(roll) * dx; 218 219 xColZ = to[0] - from[0]; 220 yColZ = to[1] - from[1]; 221 zColZ = to[2] - from[2]; 222 223 invLength = -1.0 / sqrtf(xColZ * xColZ + yColZ * yColZ + zColZ * zColZ); 224 xColZ *= invLength; 225 yColZ *= invLength; 226 zColZ *= invLength; 227 228 xColX = yColY * zColZ - zColY * yColZ; 229 yColX = zColY * xColZ - xColY * zColZ; 230 zColX = xColY * yColZ - yColY * xColZ; 231 232 invLength = 1.0 / sqrtf(xColX * xColX + yColX * yColX + zColX * zColX); 233 234 xColX *= invLength; 235 yColX *= invLength; 236 zColX *= invLength; 237 238 xColY = yColZ * zColX - zColZ * yColX; 239 yColY = zColZ * xColX - xColZ * zColX; 240 zColY = xColZ * yColX - yColZ * xColX; 241 242 invLength = 1.0 / sqrtf(xColY * xColY + yColY * yColY + zColY * zColY); 243 xColY *= invLength; 244 yColY *= invLength; 245 zColY *= invLength; 246 247 mtx[0][0] = xColX; 248 mtx[1][0] = yColX; 249 mtx[2][0] = zColX; 250 mtx[3][0] = -(from[0] * xColX + from[1] * yColX + from[2] * zColX); 251 252 mtx[0][1] = xColY; 253 mtx[1][1] = yColY; 254 mtx[2][1] = zColY; 255 mtx[3][1] = -(from[0] * xColY + from[1] * yColY + from[2] * zColY); 256 257 mtx[0][2] = xColZ; 258 mtx[1][2] = yColZ; 259 mtx[2][2] = zColZ; 260 mtx[3][2] = -(from[0] * xColZ + from[1] * yColZ + from[2] * zColZ); 261 262 mtx[0][3] = 0; 263 mtx[1][3] = 0; 264 mtx[2][3] = 0; 265 mtx[3][3] = 1; 266 } 267 268 /** 269 * Build a matrix that rotates around the z axis, then the x axis, then the y 270 * axis, and then translates. 271 */ 272 void mtxf_rotate_zxy_and_translate(Mat4 dest, Vec3f translate, Vec3s rotate) { 273 register f32 sx = sins(rotate[0]); 274 register f32 cx = coss(rotate[0]); 275 276 register f32 sy = sins(rotate[1]); 277 register f32 cy = coss(rotate[1]); 278 279 register f32 sz = sins(rotate[2]); 280 register f32 cz = coss(rotate[2]); 281 282 dest[0][0] = cy * cz + sx * sy * sz; 283 dest[1][0] = -cy * sz + sx * sy * cz; 284 dest[2][0] = cx * sy; 285 dest[3][0] = translate[0]; 286 287 dest[0][1] = cx * sz; 288 dest[1][1] = cx * cz; 289 dest[2][1] = -sx; 290 dest[3][1] = translate[1]; 291 292 dest[0][2] = -sy * cz + sx * cy * sz; 293 dest[1][2] = sy * sz + sx * cy * cz; 294 dest[2][2] = cx * cy; 295 dest[3][2] = translate[2]; 296 297 dest[0][3] = dest[1][3] = dest[2][3] = 0.0f; 298 dest[3][3] = 1.0f; 299 } 300 301 /** 302 * Build a matrix that rotates around the x axis, then the y axis, then the z 303 * axis, and then translates. 304 */ 305 void mtxf_rotate_xyz_and_translate(Mat4 dest, Vec3f b, Vec3s c) { 306 register f32 sx = sins(c[0]); 307 register f32 cx = coss(c[0]); 308 309 register f32 sy = sins(c[1]); 310 register f32 cy = coss(c[1]); 311 312 register f32 sz = sins(c[2]); 313 register f32 cz = coss(c[2]); 314 315 dest[0][0] = cy * cz; 316 dest[0][1] = cy * sz; 317 dest[0][2] = -sy; 318 dest[0][3] = 0; 319 320 dest[1][0] = sx * sy * cz - cx * sz; 321 dest[1][1] = sx * sy * sz + cx * cz; 322 dest[1][2] = sx * cy; 323 dest[1][3] = 0; 324 325 dest[2][0] = cx * sy * cz + sx * sz; 326 dest[2][1] = cx * sy * sz - sx * cz; 327 dest[2][2] = cx * cy; 328 dest[2][3] = 0; 329 330 dest[3][0] = b[0]; 331 dest[3][1] = b[1]; 332 dest[3][2] = b[2]; 333 dest[3][3] = 1; 334 } 335 336 /** 337 * Set 'dest' to a transformation matrix that turns an object to face the camera. 338 * 'mtx' is the look-at matrix from the camera 339 * 'position' is the position of the object in the world 340 * 'angle' rotates the object while still facing the camera. 341 */ 342 void mtxf_billboard(Mat4 dest, Mat4 mtx, Vec3f position, s16 angle) { 343 dest[0][0] = coss(angle); 344 dest[0][1] = sins(angle); 345 dest[0][2] = 0; 346 dest[0][3] = 0; 347 348 dest[1][0] = -dest[0][1]; 349 dest[1][1] = dest[0][0]; 350 dest[1][2] = 0; 351 dest[1][3] = 0; 352 353 dest[2][0] = 0; 354 dest[2][1] = 0; 355 dest[2][2] = 1; 356 dest[2][3] = 0; 357 358 dest[3][0] = 359 mtx[0][0] * position[0] + mtx[1][0] * position[1] + mtx[2][0] * position[2] + mtx[3][0]; 360 dest[3][1] = 361 mtx[0][1] * position[0] + mtx[1][1] * position[1] + mtx[2][1] * position[2] + mtx[3][1]; 362 dest[3][2] = 363 mtx[0][2] * position[0] + mtx[1][2] * position[1] + mtx[2][2] * position[2] + mtx[3][2]; 364 dest[3][3] = 1; 365 } 366 367 /** 368 * Set 'dest' to a transformation matrix that aligns an object with the terrain 369 * based on the normal. Used for enemies. 370 * 'upDir' is the terrain normal 371 * 'yaw' is the angle which it should face 372 * 'pos' is the object's position in the world 373 */ 374 void mtxf_align_terrain_normal(Mat4 dest, Vec3f upDir, Vec3f pos, s16 yaw) { 375 Vec3f lateralDir; 376 Vec3f leftDir; 377 Vec3f forwardDir; 378 379 vec3f_set(lateralDir, sins(yaw), 0, coss(yaw)); 380 vec3f_normalize(upDir); 381 382 vec3f_cross(leftDir, upDir, lateralDir); 383 vec3f_normalize(leftDir); 384 385 vec3f_cross(forwardDir, leftDir, upDir); 386 vec3f_normalize(forwardDir); 387 388 dest[0][0] = leftDir[0]; 389 dest[0][1] = leftDir[1]; 390 dest[0][2] = leftDir[2]; 391 dest[3][0] = pos[0]; 392 393 dest[1][0] = upDir[0]; 394 dest[1][1] = upDir[1]; 395 dest[1][2] = upDir[2]; 396 dest[3][1] = pos[1]; 397 398 dest[2][0] = forwardDir[0]; 399 dest[2][1] = forwardDir[1]; 400 dest[2][2] = forwardDir[2]; 401 dest[3][2] = pos[2]; 402 403 dest[0][3] = 0.0f; 404 dest[1][3] = 0.0f; 405 dest[2][3] = 0.0f; 406 dest[3][3] = 1.0f; 407 } 408 409 /** 410 * Set 'mtx' to a transformation matrix that aligns an object with the terrain 411 * based on 3 height samples in an equilateral triangle around the object. 412 * Used for Mario when crawling or sliding. 413 * 'yaw' is the angle which it should face 414 * 'pos' is the object's position in the world 415 * 'radius' is the distance from each triangle vertex to the center 416 */ 417 void mtxf_align_terrain_triangle(Mat4 mtx, Vec3f pos, s16 yaw, f32 radius) { 418 struct Surface *sp74; 419 Vec3f point0; 420 Vec3f point1; 421 Vec3f point2; 422 Vec3f forward; 423 Vec3f xColumn; 424 Vec3f yColumn; 425 Vec3f zColumn; 426 f32 avgY; 427 f32 minY = -radius * 3; 428 429 point0[0] = pos[0] + radius * sins(yaw + 0x2AAA); 430 point0[2] = pos[2] + radius * coss(yaw + 0x2AAA); 431 point1[0] = pos[0] + radius * sins(yaw + 0x8000); 432 point1[2] = pos[2] + radius * coss(yaw + 0x8000); 433 point2[0] = pos[0] + radius * sins(yaw + 0xD555); 434 point2[2] = pos[2] + radius * coss(yaw + 0xD555); 435 436 point0[1] = find_floor(point0[0], pos[1] + 150, point0[2], &sp74); 437 point1[1] = find_floor(point1[0], pos[1] + 150, point1[2], &sp74); 438 point2[1] = find_floor(point2[0], pos[1] + 150, point2[2], &sp74); 439 440 if (point0[1] - pos[1] < minY) { 441 point0[1] = pos[1]; 442 } 443 444 if (point1[1] - pos[1] < minY) { 445 point1[1] = pos[1]; 446 } 447 448 if (point2[1] - pos[1] < minY) { 449 point2[1] = pos[1]; 450 } 451 452 avgY = (point0[1] + point1[1] + point2[1]) / 3; 453 454 vec3f_set(forward, sins(yaw), 0, coss(yaw)); 455 find_vector_perpendicular_to_plane(yColumn, point0, point1, point2); 456 vec3f_normalize(yColumn); 457 vec3f_cross(xColumn, yColumn, forward); 458 vec3f_normalize(xColumn); 459 vec3f_cross(zColumn, xColumn, yColumn); 460 vec3f_normalize(zColumn); 461 462 mtx[0][0] = xColumn[0]; 463 mtx[0][1] = xColumn[1]; 464 mtx[0][2] = xColumn[2]; 465 mtx[3][0] = pos[0]; 466 467 mtx[1][0] = yColumn[0]; 468 mtx[1][1] = yColumn[1]; 469 mtx[1][2] = yColumn[2]; 470 mtx[3][1] = (avgY < pos[1]) ? pos[1] : avgY; 471 472 mtx[2][0] = zColumn[0]; 473 mtx[2][1] = zColumn[1]; 474 mtx[2][2] = zColumn[2]; 475 mtx[3][2] = pos[2]; 476 477 mtx[0][3] = 0; 478 mtx[1][3] = 0; 479 mtx[2][3] = 0; 480 mtx[3][3] = 1; 481 } 482 483 /** 484 * Sets matrix 'dest' to the matrix product b * a assuming they are both 485 * transformation matrices with a w-component of 1. Since the bottom row 486 * is assumed to equal [0, 0, 0, 1], it saves some multiplications and 487 * addition. 488 * The resulting matrix represents first applying transformation b and 489 * then a. 490 */ 491 void mtxf_mul(Mat4 dest, Mat4 a, Mat4 b) { 492 Mat4 temp; 493 register f32 entry0; 494 register f32 entry1; 495 register f32 entry2; 496 497 // column 0 498 entry0 = a[0][0]; 499 entry1 = a[0][1]; 500 entry2 = a[0][2]; 501 temp[0][0] = entry0 * b[0][0] + entry1 * b[1][0] + entry2 * b[2][0]; 502 temp[0][1] = entry0 * b[0][1] + entry1 * b[1][1] + entry2 * b[2][1]; 503 temp[0][2] = entry0 * b[0][2] + entry1 * b[1][2] + entry2 * b[2][2]; 504 505 // column 1 506 entry0 = a[1][0]; 507 entry1 = a[1][1]; 508 entry2 = a[1][2]; 509 temp[1][0] = entry0 * b[0][0] + entry1 * b[1][0] + entry2 * b[2][0]; 510 temp[1][1] = entry0 * b[0][1] + entry1 * b[1][1] + entry2 * b[2][1]; 511 temp[1][2] = entry0 * b[0][2] + entry1 * b[1][2] + entry2 * b[2][2]; 512 513 // column 2 514 entry0 = a[2][0]; 515 entry1 = a[2][1]; 516 entry2 = a[2][2]; 517 temp[2][0] = entry0 * b[0][0] + entry1 * b[1][0] + entry2 * b[2][0]; 518 temp[2][1] = entry0 * b[0][1] + entry1 * b[1][1] + entry2 * b[2][1]; 519 temp[2][2] = entry0 * b[0][2] + entry1 * b[1][2] + entry2 * b[2][2]; 520 521 // column 3 522 entry0 = a[3][0]; 523 entry1 = a[3][1]; 524 entry2 = a[3][2]; 525 temp[3][0] = entry0 * b[0][0] + entry1 * b[1][0] + entry2 * b[2][0] + b[3][0]; 526 temp[3][1] = entry0 * b[0][1] + entry1 * b[1][1] + entry2 * b[2][1] + b[3][1]; 527 temp[3][2] = entry0 * b[0][2] + entry1 * b[1][2] + entry2 * b[2][2] + b[3][2]; 528 529 temp[0][3] = temp[1][3] = temp[2][3] = 0; 530 temp[3][3] = 1; 531 532 mtxf_copy(dest, temp); 533 } 534 535 /** 536 * Set matrix 'dest' to 'mtx' scaled by vector s 537 */ 538 void mtxf_scale_vec3f(Mat4 dest, Mat4 mtx, Vec3f s) { 539 register s32 i; 540 541 for (i = 0; i < 4; i++) { 542 dest[0][i] = mtx[0][i] * s[0]; 543 dest[1][i] = mtx[1][i] * s[1]; 544 dest[2][i] = mtx[2][i] * s[2]; 545 dest[3][i] = mtx[3][i]; 546 } 547 } 548 549 /** 550 * Multiply a vector with a transformation matrix, which applies the transformation 551 * to the point. Note that the bottom row is assumed to be [0, 0, 0, 1], which is 552 * true for transformation matrices if the translation has a w component of 1. 553 */ 554 void mtxf_mul_vec3s(Mat4 mtx, Vec3s b) { 555 register f32 x = b[0]; 556 register f32 y = b[1]; 557 register f32 z = b[2]; 558 559 b[0] = x * mtx[0][0] + y * mtx[1][0] + z * mtx[2][0] + mtx[3][0]; 560 b[1] = x * mtx[0][1] + y * mtx[1][1] + z * mtx[2][1] + mtx[3][1]; 561 b[2] = x * mtx[0][2] + y * mtx[1][2] + z * mtx[2][2] + mtx[3][2]; 562 } 563 564 /** 565 * Convert float matrix 'src' to fixed point matrix 'dest'. 566 * The float matrix may not contain entries larger than 65536 or the console 567 * crashes. The fixed point matrix has entries with a 16-bit integer part, so 568 * the floating point numbers are multiplied by 2^16 before being cast to a s32 569 * integer. If this doesn't fit, the N64 and iQue consoles will throw an 570 * exception. On Wii and Wii U Virtual Console the value will simply be clamped 571 * and no crashes occur. 572 */ 573 void mtxf_to_mtx(Mtx *dest, Mat4 src) { 574 #ifdef AVOID_UB 575 // Avoid type-casting which is technically UB by calling the equivalent 576 // guMtxF2L function. This helps little-endian systems, as well. 577 guMtxF2L(src, dest); 578 #else 579 s32 asFixedPoint; 580 register s32 i; 581 register s16 *a3 = (s16 *) dest; // all integer parts stored in first 16 bytes 582 register s16 *t0 = (s16 *) dest + 16; // all fraction parts stored in last 16 bytes 583 register f32 *t1 = (f32 *) src; 584 585 for (i = 0; i < 16; i++) { 586 asFixedPoint = *t1++ * (1 << 16); //! float-to-integer conversion responsible for PU crashes 587 *a3++ = GET_HIGH_S16_OF_32(asFixedPoint); // integer part 588 *t0++ = GET_LOW_S16_OF_32(asFixedPoint); // fraction part 589 } 590 #endif 591 } 592 593 /** 594 * Set 'mtx' to a transformation matrix that rotates around the z axis. 595 */ 596 void mtxf_rotate_xy(Mtx *mtx, s16 angle) { 597 Mat4 temp; 598 599 mtxf_identity(temp); 600 temp[0][0] = coss(angle); 601 temp[0][1] = sins(angle); 602 temp[1][0] = -temp[0][1]; 603 temp[1][1] = temp[0][0]; 604 mtxf_to_mtx(mtx, temp); 605 } 606 607 /** 608 * Extract a position given an object's transformation matrix and a camera matrix. 609 * This is used for determining the world position of the held object: since objMtx 610 * inherits the transformation from both the camera and Mario, it calculates this 611 * by taking the camera matrix and inverting its transformation by first rotating 612 * objMtx back from screen orientation to world orientation, and then subtracting 613 * the camera position. 614 */ 615 void get_pos_from_transform_mtx(Vec3f dest, Mat4 objMtx, Mat4 camMtx) { 616 f32 camX = camMtx[3][0] * camMtx[0][0] + camMtx[3][1] * camMtx[0][1] + camMtx[3][2] * camMtx[0][2]; 617 f32 camY = camMtx[3][0] * camMtx[1][0] + camMtx[3][1] * camMtx[1][1] + camMtx[3][2] * camMtx[1][2]; 618 f32 camZ = camMtx[3][0] * camMtx[2][0] + camMtx[3][1] * camMtx[2][1] + camMtx[3][2] * camMtx[2][2]; 619 620 dest[0] = 621 objMtx[3][0] * camMtx[0][0] + objMtx[3][1] * camMtx[0][1] + objMtx[3][2] * camMtx[0][2] - camX; 622 dest[1] = 623 objMtx[3][0] * camMtx[1][0] + objMtx[3][1] * camMtx[1][1] + objMtx[3][2] * camMtx[1][2] - camY; 624 dest[2] = 625 objMtx[3][0] * camMtx[2][0] + objMtx[3][1] * camMtx[2][1] + objMtx[3][2] * camMtx[2][2] - camZ; 626 } 627 628 /** 629 * Take the vector starting at 'from' pointed at 'to' an retrieve the length 630 * of that vector, as well as the yaw and pitch angles. 631 * Basically it converts the direction to spherical coordinates. 632 */ 633 void vec3f_get_dist_and_angle(Vec3f from, Vec3f to, f32 *dist, s16 *pitch, s16 *yaw) { 634 register f32 x = to[0] - from[0]; 635 register f32 y = to[1] - from[1]; 636 register f32 z = to[2] - from[2]; 637 638 *dist = sqrtf(x * x + y * y + z * z); 639 *pitch = atan2s(sqrtf(x * x + z * z), y); 640 *yaw = atan2s(z, x); 641 } 642 643 /** 644 * Construct the 'to' point which is distance 'dist' away from the 'from' position, 645 * and has the angles pitch and yaw. 646 */ 647 void vec3f_set_dist_and_angle(Vec3f from, Vec3f to, f32 dist, s16 pitch, s16 yaw) { 648 to[0] = from[0] + dist * coss(pitch) * sins(yaw); 649 to[1] = from[1] + dist * sins(pitch); 650 to[2] = from[2] + dist * coss(pitch) * coss(yaw); 651 } 652 653 /** 654 * Return the value 'current' after it tries to approach target, going up at 655 * most 'inc' and going down at most 'dec'. 656 */ 657 s32 approach_s32(s32 current, s32 target, s32 inc, s32 dec) { 658 //! If target is close to the max or min s32, then it's possible to overflow 659 // past it without stopping. 660 661 if (current < target) { 662 current += inc; 663 if (current > target) { 664 current = target; 665 } 666 } else { 667 current -= dec; 668 if (current < target) { 669 current = target; 670 } 671 } 672 return current; 673 } 674 675 /** 676 * Return the value 'current' after it tries to approach target, going up at 677 * most 'inc' and going down at most 'dec'. 678 */ 679 f32 approach_f32(f32 current, f32 target, f32 inc, f32 dec) { 680 if (current < target) { 681 current += inc; 682 if (current > target) { 683 current = target; 684 } 685 } else { 686 current -= dec; 687 if (current < target) { 688 current = target; 689 } 690 } 691 return current; 692 } 693 694 /** 695 * Helper function for atan2s. Does a look up of the arctangent of y/x assuming 696 * the resulting angle is in range [0, 0x2000] (1/8 of a circle). 697 */ 698 static u16 atan2_lookup(f32 y, f32 x) { 699 u16 ret; 700 701 if (x == 0) { 702 ret = gArctanTable[0]; 703 } else { 704 ret = gArctanTable[(s32)(y / x * 1024 + 0.5f)]; 705 } 706 return ret; 707 } 708 709 /** 710 * Compute the angle from (0, 0) to (x, y) as a s16. Given that terrain is in 711 * the xz-plane, this is commonly called with (z, x) to get a yaw angle. 712 */ 713 s16 atan2s(f32 y, f32 x) { 714 u16 ret; 715 716 if (x >= 0) { 717 if (y >= 0) { 718 if (y >= x) { 719 ret = atan2_lookup(x, y); 720 } else { 721 ret = 0x4000 - atan2_lookup(y, x); 722 } 723 } else { 724 y = -y; 725 if (y < x) { 726 ret = 0x4000 + atan2_lookup(y, x); 727 } else { 728 ret = 0x8000 - atan2_lookup(x, y); 729 } 730 } 731 } else { 732 x = -x; 733 if (y < 0) { 734 y = -y; 735 if (y >= x) { 736 ret = 0x8000 + atan2_lookup(x, y); 737 } else { 738 ret = 0xC000 - atan2_lookup(y, x); 739 } 740 } else { 741 if (y < x) { 742 ret = 0xC000 + atan2_lookup(y, x); 743 } else { 744 ret = -atan2_lookup(x, y); 745 } 746 } 747 } 748 return ret; 749 } 750 751 /** 752 * Compute the atan2 in radians by calling atan2s and converting the result. 753 */ 754 f32 atan2f(f32 y, f32 x) { 755 return (f32) atan2s(y, x) * M_PI / 0x8000; 756 } 757 758 #define CURVE_BEGIN_1 1 759 #define CURVE_BEGIN_2 2 760 #define CURVE_MIDDLE 3 761 #define CURVE_END_1 4 762 #define CURVE_END_2 5 763 764 /** 765 * Set 'result' to a 4-vector with weights corresponding to interpolation 766 * value t in [0, 1] and gSplineState. Given the current control point P, these 767 * weights are for P[0], P[1], P[2] and P[3] to obtain an interpolated point. 768 * The weights naturally sum to 1, and they are also always in range [0, 1] so 769 * the interpolated point will never overshoot. The curve is guaranteed to go 770 * through the first and last point, but not through intermediate points. 771 * 772 * gSplineState ensures that the curve is clamped: the first two points 773 * and last two points have different weight formulas. These are the weights 774 * just before gSplineState transitions: 775 * 1: [1, 0, 0, 0] 776 * 1->2: [0, 3/12, 7/12, 2/12] 777 * 2->3: [0, 1/6, 4/6, 1/6] 778 * 3->3: [0, 1/6, 4/6, 1/6] (repeats) 779 * 3->4: [0, 1/6, 4/6, 1/6] 780 * 4->5: [0, 2/12, 7/12, 3/12] 781 * 5: [0, 0, 0, 1] 782 * 783 * I suspect that the weight formulas will give a 3rd degree B-spline with the 784 * common uniform clamped knot vector, e.g. for n points: 785 * [0, 0, 0, 0, 1, 2, ... n-1, n, n, n, n] 786 * TODO: verify the classification of the spline / figure out how polynomials were computed 787 */ 788 void spline_get_weights(Vec4f result, f32 t, UNUSED s32 c) { 789 f32 tinv = 1 - t; 790 f32 tinv2 = tinv * tinv; 791 f32 tinv3 = tinv2 * tinv; 792 f32 t2 = t * t; 793 f32 t3 = t2 * t; 794 795 switch (gSplineState) { 796 case CURVE_BEGIN_1: 797 result[0] = tinv3; 798 result[1] = t3 * 1.75f - t2 * 4.5f + t * 3.0f; 799 result[2] = -t3 * (11 / 12.0f) + t2 * 1.5f; 800 result[3] = t3 * (1 / 6.0f); 801 break; 802 case CURVE_BEGIN_2: 803 result[0] = tinv3 * 0.25f; 804 result[1] = t3 * (7 / 12.0f) - t2 * 1.25f + t * 0.25f + (7 / 12.0f); 805 result[2] = -t3 * 0.5f + t2 * 0.5f + t * 0.5f + (1 / 6.0f); 806 result[3] = t3 * (1 / 6.0f); 807 break; 808 case CURVE_MIDDLE: 809 result[0] = tinv3 * (1 / 6.0f); 810 result[1] = t3 * 0.5f - t2 + (4 / 6.0f); 811 result[2] = -t3 * 0.5f + t2 * 0.5f + t * 0.5f + (1 / 6.0f); 812 result[3] = t3 * (1 / 6.0f); 813 break; 814 case CURVE_END_1: 815 result[0] = tinv3 * (1 / 6.0f); 816 result[1] = -tinv3 * 0.5f + tinv2 * 0.5f + tinv * 0.5f + (1 / 6.0f); 817 result[2] = tinv3 * (7 / 12.0f) - tinv2 * 1.25f + tinv * 0.25f + (7 / 12.0f); 818 result[3] = t3 * 0.25f; 819 break; 820 case CURVE_END_2: 821 result[0] = tinv3 * (1 / 6.0f); 822 result[1] = -tinv3 * (11 / 12.0f) + tinv2 * 1.5f; 823 result[2] = tinv3 * 1.75f - tinv2 * 4.5f + tinv * 3.0f; 824 result[3] = t3; 825 break; 826 } 827 } 828 829 /** 830 * Initialize a spline animation. 831 * 'keyFrames' should be an array of (s, x, y, z) vectors 832 * s: the speed of the keyframe in 1000/frames, e.g. s=100 means the keyframe lasts 10 frames 833 * (x, y, z): point in 3D space on the curve 834 * The array should end with three entries with s=0 (infinite keyframe duration). 835 * That's because the spline has a 3rd degree polynomial, so it looks 3 points ahead. 836 */ 837 void anim_spline_init(Vec4s *keyFrames) { 838 gSplineKeyframe = keyFrames; 839 gSplineKeyframeFraction = 0; 840 gSplineState = 1; 841 } 842 843 /** 844 * Poll the next point from a spline animation. 845 * anim_spline_init should be called before polling for vectors. 846 * Returns TRUE when the last point is reached, FALSE otherwise. 847 */ 848 s32 anim_spline_poll(Vec3f result) { 849 Vec4f weights; 850 s32 i; 851 s32 hasEnded = FALSE; 852 853 vec3f_copy(result, gVec3fZero); 854 spline_get_weights(weights, gSplineKeyframeFraction, gSplineState); 855 for (i = 0; i < 4; i++) { 856 result[0] += weights[i] * gSplineKeyframe[i][1]; 857 result[1] += weights[i] * gSplineKeyframe[i][2]; 858 result[2] += weights[i] * gSplineKeyframe[i][3]; 859 } 860 861 if ((gSplineKeyframeFraction += gSplineKeyframe[0][0] / 1000.0f) >= 1) { 862 gSplineKeyframe++; 863 gSplineKeyframeFraction--; 864 switch (gSplineState) { 865 case CURVE_END_2: 866 hasEnded = TRUE; 867 break; 868 case CURVE_MIDDLE: 869 if (gSplineKeyframe[2][0] == 0) { 870 gSplineState = CURVE_END_1; 871 } 872 break; 873 default: 874 gSplineState++; 875 break; 876 } 877 } 878 879 return hasEnded; 880 }