fir.cpp (6933B)
1 /** 2 * KFR (https://www.kfrlib.com) 3 * Copyright (C) 2016-2023 Dan Cazarin 4 * See LICENSE.txt for details 5 */ 6 7 #include <kfr/base.hpp> 8 #ifdef HAVE_DFT 9 #include <kfr/dft.hpp> 10 #endif 11 #include <kfr/dsp.hpp> 12 #include <kfr/io.hpp> 13 14 using namespace kfr; 15 16 // Define a macro to check if Python is installed 17 #ifndef PYTHON_IS_INSTALLED 18 #define PYTHON_IS_INSTALLED 1 19 #endif 20 21 int main() 22 { 23 // Print the version of the KFR library being used 24 println(library_version()); 25 26 // -------------------------------------------------------------------------------------- 27 // --------------------- FIR filter design (using window functions) --------------------- 28 // -------------------------------------------------------------------------------------- 29 30 // Define options for plotting DSP data 31 const std::string options = "phaseresp=True"; 32 33 // Define filter coefficient buffers of different sizes 34 univector<fbase, 15> taps15; 35 univector<fbase, 127> taps127; 36 univector<fbase, 8191> taps8191; 37 38 // Prepare window function expressions, data is not processed at this point 39 // Hann window for 15-point filter 40 expression_handle<fbase> hann = to_handle(window_hann(taps15.size())); 41 // Kaiser window with alpha = 3.0 for 127-point filter 42 expression_handle<fbase> kaiser = to_handle(window_kaiser(taps127.size(), 3.0)); 43 // Blackman-Harris window for 8191-point filter 44 expression_handle<fbase> blackman_harris = to_handle(window_blackman_harris(taps8191.size())); 45 46 // Design a 15-point lowpass FIR filter with a cutoff frequency of 0.15 using Hann window 47 fir_lowpass(taps15, 0.15, hann, true); 48 #if PYTHON_IS_INSTALLED 49 // Plot the filter, frequency, and impulse response 50 // internally plot_save calls Python (matplotlib and numpy packages used) to save SVG files 51 plot_save("fir_lowpass_hann", taps15, 52 options + ", phasearg='auto', title='15-point lowpass FIR, Hann window'"); 53 #endif 54 55 // Design a 127-point lowpass FIR filter with a cutoff frequency of 0.2 using the Kaiser window 56 // The resulting coefficients are in taps127 57 fir_lowpass(taps127, 0.2, kaiser, true); 58 #if PYTHON_IS_INSTALLED 59 // Plot the filter, frequency, and impulse response 60 plot_save("fir_lowpass_kaiser", taps127, 61 options + ", phasearg='auto', title='127-point lowpass FIR, Kaiser window (\\alpha=3.0)'"); 62 #endif 63 64 // Design a 127-point highpass FIR filter with a cutoff frequency of 0.2 using the Kaiser window 65 // The resulting coefficients are in taps127 66 fir_highpass(taps127, 0.2, kaiser, true); 67 #if PYTHON_IS_INSTALLED 68 // Plot the filter, frequency, and impulse response 69 plot_save("fir_highpass_kaiser", taps127, 70 options + ", phasearg='auto', title='127-point highpass FIR, Kaiser window (\\alpha=3.0)'"); 71 #endif 72 73 // Design a 127-point bandpass FIR filter with cutoff frequencies of 0.2 and 0.4 using the Kaiser window 74 fir_bandpass(taps127, 0.2, 0.4, kaiser, true); 75 #if PYTHON_IS_INSTALLED 76 // Plot the filter, frequency, and impulse response 77 plot_save("fir_bandpass_kaiser", taps127, 78 options + ", phasearg='auto', title='127-point bandpass FIR, Kaiser window (\\alpha=3.0)'"); 79 #endif 80 81 // Design a 127-point bandstop FIR filter with cutoff frequencies of 0.2 and 0.4 using the Kaiser window 82 fir_bandstop(taps127, 0.2, 0.4, kaiser, true); 83 #if PYTHON_IS_INSTALLED 84 // Plot the filter, frequency, and impulse response 85 plot_save("fir_bandstop_kaiser", taps127, 86 options + ", phasearg='auto', title='127-point bandstop FIR, Kaiser window (\\alpha=3.0)'"); 87 #endif 88 89 // Design an 8191-point lowpass FIR filter with a cutoff frequency of 0.15 using the Blackman-Harris 90 // window 91 fir_lowpass(taps8191, 0.15, blackman_harris, true); 92 // Initialize a buffer that is 8191+150 samples long and set it to zero 93 univector<fbase, 8191 + 150> taps8191_150 = scalar(0); 94 95 // Shift the filter coefficients by 150 samples 96 taps8191_150.slice(150) = taps8191; 97 98 #if PYTHON_IS_INSTALLED 99 // Plot the filter, frequency, and impulse response 100 // phasearg is used to get the correct phase shift (offset by 150 samples) 101 plot_save( 102 "fir_lowpass_blackman", taps8191_150, 103 options + 104 ", phasearg=4095+150, title='8191-point lowpass FIR, Blackman-Harris window', padwidth=16384"); 105 #endif 106 107 // -------------------------------------------------------------------------------------- 108 // -------------------------- Using FIR filter as an expression ------------------------- 109 // -------------------------------------------------------------------------------------- 110 111 // Generate 10,000 samples of white noise 112 univector<float> noise = truncate(gen_random_range(random_init(1, 2, 3, 4), -1.f, +1.f), 10000); 113 114 // Apply the bandstop filter designed earlier to the noise 115 univector<float> filtered_noise = fir(noise, fir_params{ taps127 }); 116 117 #if PYTHON_IS_INSTALLED 118 // Plot the original noise and the filtered noise 119 plot_save("noise", noise, "title='Original noise', div_by_N=True"); 120 plot_save("filtered_noise", filtered_noise, "title='Filtered noise', div_by_N=True"); 121 #endif 122 123 // -------------------------------------------------------------------------------------- 124 // ------------------------------- FIR filter as a class -------------------------------- 125 // -------------------------------------------------------------------------------------- 126 127 // Redesign the 127-point bandpass FIR filter with cutoff frequencies of 0.2 and 0.4 using the Kaiser 128 // window 129 fir_bandpass(taps127, 0.2, 0.4, kaiser, true); 130 // Initialize an FIR filter class with float input/output and fbase-typed taps 131 filter_fir<fbase, float> fir_filter(taps127); 132 133 // Apply the FIR filter to the noise data 134 univector<float> filtered_noise2; 135 fir_filter.apply(filtered_noise2, noise); 136 137 #if PYTHON_IS_INSTALLED 138 // Plot the results of the filtered noise 139 plot_save("filtered_noise2", filtered_noise2, "title='Filtered noise 2', div_by_N=True"); 140 #endif 141 142 #ifdef HAVE_DFT 143 // -------------------------------------------------------------------------------------- 144 // ---------------------- Convolution filter (optimized using DFT) ---------------------- 145 // -------------------------------------------------------------------------------------- 146 147 // Initialize a convolution filter with float input/output and fbase-typed taps 148 convolve_filter<fbase> conv_filter(taps127); 149 150 // Apply the convolution filter to the noise data 151 univector<fbase> filtered_noise3; 152 conv_filter.apply(filtered_noise3, noise * fbase(1.0)); 153 154 #if PYTHON_IS_INSTALLED 155 // Plot the results, same as filtered_noise2 156 plot_save("filtered_noise3", filtered_noise3, "title='Filtered noise 3', div_by_N=True"); 157 #endif 158 #endif 159 160 println("SVG plots have been saved to svg directory"); 161 162 return 0; 163 }