Proteus

Guitar amp and pedal capture plugin using neural networks
Log | Files | Refs | Submodules | README

RTNeuralLSTM.cpp (3511B)


      1 #include "RTNeuralLSTM.h"
      2 
      3 using Vec2d = std::vector<std::vector<float>>;
      4 
      5 Vec2d transpose(const Vec2d& x)
      6 {
      7     auto outer_size = x.size();
      8     auto inner_size = x[0].size();
      9     Vec2d y(inner_size, std::vector<float>(outer_size, 0.0f));
     10 
     11     for (size_t i = 0; i < outer_size; ++i)
     12     {
     13         for (size_t j = 0; j < inner_size; ++j)
     14             y[j][i] = x[i][j];
     15     }
     16 
     17     return y;
     18 }
     19 
     20 template <typename T1>
     21 void RT_LSTM::set_weights(T1 model, const char* filename)
     22 {
     23     // Initialize the correct model
     24     auto& lstm = (*model).template get<0>();
     25     auto& dense = (*model).template get<1>();
     26 
     27     // read a JSON file
     28     std::ifstream i2(filename);
     29     nlohmann::json weights_json;
     30     i2 >> weights_json;
     31 
     32     Vec2d lstm_weights_ih = weights_json["/state_dict/rec.weight_ih_l0"_json_pointer];
     33     lstm.setWVals(transpose(lstm_weights_ih));
     34 
     35     Vec2d lstm_weights_hh = weights_json["/state_dict/rec.weight_hh_l0"_json_pointer];
     36     lstm.setUVals(transpose(lstm_weights_hh));
     37 
     38     std::vector<float> lstm_bias_ih = weights_json["/state_dict/rec.bias_ih_l0"_json_pointer];
     39     std::vector<float> lstm_bias_hh = weights_json["/state_dict/rec.bias_hh_l0"_json_pointer];
     40     for (int i = 0; i < 160; ++i)
     41         lstm_bias_hh[i] += lstm_bias_ih[i];
     42     lstm.setBVals(lstm_bias_hh);
     43 
     44     Vec2d dense_weights = weights_json["/state_dict/lin.weight"_json_pointer];
     45     dense.setWeights(dense_weights);
     46 
     47     std::vector<float> dense_bias = weights_json["/state_dict/lin.bias"_json_pointer];
     48     dense.setBias(dense_bias.data());
     49    
     50 }
     51 void RT_LSTM::load_json(const char* filename)
     52 {
     53     // Read in the JSON file
     54     std::ifstream i2(filename);
     55     nlohmann::json weights_json;
     56     i2 >> weights_json;
     57 
     58     // Get the input size of the JSON file
     59     int input_size_json = weights_json["/model_data/input_size"_json_pointer];
     60     input_size = input_size_json;
     61 
     62     // Load the appropriate model
     63     if (input_size == 1) {
     64         set_weights(&model, filename);
     65     }
     66     else if (input_size == 2) {
     67         set_weights(&model_cond1, filename);
     68     }
     69     else if (input_size == 3) {
     70         set_weights(&model_cond2, filename);
     71     }
     72 }
     73 
     74 
     75 void RT_LSTM::reset()
     76 {
     77     if (input_size == 1) {
     78         model.reset();
     79     } else {
     80         model_cond1.reset();
     81     }
     82 }
     83 
     84 void RT_LSTM::process(const float* inData, float* outData, int numSamples)
     85 {
     86 
     87     for (int i = 0; i < numSamples; ++i)
     88         outData[i] = model.forward(inData + i) + inData[i];
     89 }
     90 
     91 void RT_LSTM::process(const float* inData, float param, float* outData, int numSamples)
     92 {
     93     // Check for parameter changes for smoothing calculations
     94     if (param != previousParam1) {
     95         steppedValue1 = (param - previousParam1) / numSamples;
     96         changedParam1 = true;
     97     }
     98     else {
     99         changedParam1 = false;
    100     }
    101 
    102     for (int i = 0; i < numSamples; ++i) {
    103         inArray1[0] = inData[i];
    104 
    105         // Perform ramped value calculations to smooth out sound
    106         if (changedParam1 == true) {
    107             inArray1[1] = previousParam1 + (i + 1) * steppedValue1;
    108         }
    109         else {
    110             inArray1[1] = param;
    111         }
    112 
    113         outData[i] = model_cond1.forward(inArray1) + inData[i];
    114     }
    115     previousParam1 = param;
    116 }
    117 
    118 void RT_LSTM::process(const float* inData, float param1, float param2, float* outData, int numSamples)
    119 {
    120     for (int i = 0; i < numSamples; ++i) {
    121         inArray2[0] = inData[i];
    122         inArray2[1] = param1;
    123         inArray2[2] = param2;
    124         outData[i] = model_cond2.forward(inArray2) + inData[i];
    125     }
    126 }
    127