AnalogTapeModel

Physical modelling signal processing for analog tape recording
Log | Files | Refs | Submodules | README | LICENSE

Digitizing Hysteresis.md (3018B)


      1 ---
      2 author: Jatin Chowdhury
      3 title: Continuous Time Equations for Analog Tape Modeling
      4 date: 2/1/2019
      5 ---
      6 
      7 ## Hysteresis
      8 
      9 The magnetostatic field recorded to magnetic tape can be described using a hysteresis loop. A circuit simulation of a hysteresis loop by Martin Holters and Udo Zolzer, using the Jiles-Atherton magnetisation model can be found at http://dafx16.vutbr.cz/dafxpapers/08-DAFx-16_paper_10-PN.pdf. They use the following differential equation to describe magnetisation 'M' as a function of magnetic field 'H':
     10 
     11 $$ \frac{dM}{dH} = \frac{(1-c) \delta_M (M_{an} - M)}{(1-c) \delta k - \alpha (M_{an} - M)} + c \frac{dM_{an}}{dH} $$
     12 
     13 where $M_{an}$ is the anisotropic magnetisation given by:
     14 
     15 $$ M_{an} = M_s L \Big( \frac{H + \alpha M}{a} \Big) $$
     16 
     17 where $M_s$ is the magnetisation saturation, and $L$ is the Langevin function:
     18 
     19 $$ L(x) = \coth (x) - \frac{1}{x} $$
     20 $$ L'(x) = \frac{1}{x^2} - \coth^2(x) + 1 $$
     21 $$ L''(x) = 2 \coth(x) \cdot (\coth^2(x) - 1) - \frac{2}{x^3} $$
     22 
     23 Let $Q(t) = \frac{H + \alpha M}{a}$
     24 
     25 Differentiating, we get:
     26 
     27 $$ \frac{dM}{dt} = \frac{(1-c) \delta_M (M_sL(Q) - M)}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{dH}{dt} + c \frac{M_s}{a} \Big(\frac{dH}{dt} + \alpha \frac{dM}{dt} \Big) L'(Q) $$
     28 
     29 (wrong see paper)
     30 $$
     31 \frac{d^2 M}{dt^2} = \frac{(1-c) \delta_M (M_sL(Q) - M)}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{d^2H}{dt^2} +
     32 \frac{(1-c) \delta_M (M_sL'(Q) - \dot{M})}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{dH}{dt} + 
     33 \frac{(1-c) \delta_M (M_sL(Q) - M)(-\alpha (M_sL'(Q) - \dot{M}))}{((1-c) \delta k - \alpha (M_sL(Q) - M))^2} \frac{dH}{dt} + 
     34 c \frac{M_s}{a} \Big(\frac{dH}{dt} c \frac{M_s}{a} (\frac{dH}{dt} + \alpha \frac{dM}{dt}) L''(Q) + \frac{d^2H}{dt^2} L'(Q) + \alpha \frac{dM}{dt} c \frac{M_s}{a} (\frac{dH}{dt} + \alpha \frac{dM}{dt}) L''(Q) + \alpha \frac{d^2M}{dt^2} L'(Q) \Big) 
     35 $$
     36 
     37 Simplified (wrong see paper):
     38 $$ \frac{d^2 M}{dt^2} = \frac{
     39 \frac{(1-c) \delta_M (M_sL(Q) - M)}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{d^2H}{dt^2} + 
     40 \frac{(1-c) \delta_M (M_sL'(Q) - \dot{M})}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{dH}{dt} + 
     41 \frac{(1-c) \delta_M (M_sL(Q) - M)(-\alpha (M_sL'(Q) - \dot{M}))}{((1-c) \delta k - \alpha (M_sL(Q) - M))^2} \frac{dH}{dt} + 
     42 c \frac{M_s}{a} \Big(\frac{d^2H}{dt^2} L'(Q) + c \frac{M_s}{a} L''(Q) (\dot{H} + \alpha \dot{M})^2 \Big)}
     43 {1 - c \alpha \frac{M_s}{a} L'(Q)}
     44 $$
     45 
     46 
     47 $$ \frac{dM}{dt} = \frac{\frac{(1-c) \delta_M (M_sL(Q) - M)}{(1-c) \delta k - \alpha (M_sL(Q) - M)} \frac{dH}{dt} + c \frac{M_s}{a} \frac{dH}{dt} L'(Q)}{1 - c \alpha \frac{M_s}{a} L'(Q)} = f(t, M, \vec{u})  $$
     48 
     49 where $\vec{u} = \begin{bmatrix}
     50 H \\
     51 \dot{H} \\
     52 \ddot{H}
     53 \end{bmatrix}$
     54 
     55 Using trapezoidal rule: 
     56 
     57 $$ \dot{\hat{H}}(n) = 2 \frac{\hat{H}(n) - \hat{H}(n-1)}{T} - \dot{\hat{H}}(n-1) $$
     58 
     59 and similar for $\ddot{\hat{H}}$. Now, using the semi-implicit trapezoidal rule [Yeh]:
     60 
     61 $$ \hat{M}(n) = \hat{M}(n-1) + \frac{T}{2} \frac{f[n, \hat{M}(n-1), \vec{u}(n)] + f[n-1, \hat{M}(n-1), \vec{u}(n-1)]}{1 - \frac{T}{2}\ddot{\hat{M}}(n-1)} $$